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Abstract
Most modern libraries for regular expression matching allow back-references (i. e., repetition
operators) that substantially increase expressive power, but also lead to intractability. In order
to find a better balance between expressiveness and tractability, we combine these with the notion
of determinism for regular expressions used in XML DTDs and XML Schema. This includes the
definition of a suitable automaton model, and a generalization of the Glushkov construction.
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1 Introduction

Regular expressions were introduced in 1956 by Kleene [34] and quickly found wide use
in both theoretical and applied computer science. While the theoretical interpretation of
regular expressions remains mostly unchanged (as expressions that describe exactly the class
of regular languages), modern applications use variants that vary greatly in expressive power
and algorithmic properties. This paper tries to find common ground between two of these
variants with opposing approaches to the balance between expressive power and tractability.

The first variant that we consider are regex, regular expressions that are extended
with a back-reference operator. This operator is used in almost all modern programming
languages (like e. g. Java, PERL, and .NET). For example, the regex 〈x : (a∨ b)∗〉 ·&x defines
{ww | w ∈ {a, b}∗}, as (a∨ b)∗ can create a w ∈ {a, b}∗, which is then stored in the variable
x and repeated with the reference &x. Hence, back-references allow to define non-regular
languages; but with the side effect that the membership problem is NP-complete (cf. Aho [2]).

The other variant, deterministic regular expressions (also known as 1-unambiguous regular
expressions), uses an opposite approach, and achieves a more efficient membership problem
than regular expressions by defining only a strict subclass of the regular languages.

Intuitively, a regular expression is deterministic if, when matching a word from left to right
with no lookahead, it is always clear where in the expression the next symbol must be matched.
This property has a characterization via the Glushkov construction that converts every regular
expression α into a (potentially non-deterministic) finite automatonM(α), by treating each
terminal position in α as a state. Then α is deterministic if M(α) is deterministic. As a
consequence, the membership problem for deterministic regular expressions can be solved
more efficiently than for regular expressions in general (more details can be found in [31]).
Hence, in spite of their limited expressive power, deterministic regular expressions are used
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in actual applications: Originally defined for the ISO standard for SGML (see Brüggemann-
Klein and Wood [9]), they are a central part of the W3C recommendations on XML DTDs [7]
and XML Schema [27] (see Murata et al. [41]).

The goal of this paper is finding common ground between these two variants, by introducing
deterministic regex and an appropriate automaton model, the deterministic memory automata
with trap-state (DTMFA). To elaborate: We first introduce a new automaton model for
regex, the memory automata with trap-state (TMFA). While the TMFA is based on the
MFA that was proposed by Schmid [45], its deterministic variant, the DTMFA, is better
suited for complementation than the deterministic MFA. We then generalize the notion of
deterministic regular expressions to regex, and show that the Glushkov construction can
also be generalized. This allows us not only to efficiently decide the membership problem
for deterministic regex, but also whether a regex is deterministic. After this, we study the
expressive power of these models. Although deterministic regex share many of the limitations
of deterministic regular expressions (in particular, the inherent non-determinism of some
regular languages persists), their expressive power offers some surprises. Finally, we examine
a subclass of deterministic regexes and DTMFA for which polynomial space minimization is
possible, and we consider an alternative notion of determinism.

From the perspective of deterministic regular expressions, this paper proposes a natural
extension that significantly increases the expressive power, while still having a tractable
membership problem. From a regex point of view, we restrict regex to their deterministic
core, thus obtaining a tractable subclass. Hence, the authors intend this paper as a starting
point for further work, as it opens a new direction on research into making regex tractable.
For space reasons, detailed proofs are given in a full version of the paper [26].

Main contributions. The main conceptual contribution of this paper are the notion of
determinism in regex, and an appropriate deterministic automaton model. The main
challenge from this point of view was finding a natural extension of deterministic regular
expressions that preserves the following properties: A natural definition of determinism
that can be checked efficiently and also has an automata-theoretic characterization, and
an efficient Glushkov-style conversion to automata that decide the membership problem
efficiently. Regarding technical contributions, the authors would like to emphasize that, in
addition to the effort that was needed to accomplish the aforementioned goals, the paper uses
subtleties of the back-reference operator in novel ways. By using these, deterministic regex
can define non-deterministic regular languages (in particular, all unary regular languages),
as well as infinite languages that are not pumpable in the usual sense.

Related work. Regex were first examined from a theoretical point of view by Aho [2], but
without fully defining the semantics. There were various proposals for semantics, of which
we mention the first by Câmpeanu, Salomaa, Yu [10], and the recent one by Schmid [45],
which is the basis for this paper. Apart from defining the semantics, there was work on
the expressive power [10, 11, 25], the static analysis [11, 23, 24], and the tractability of the
membership problem (investigated in terms of a strongly restricted subclass of regex) [21, 22].
They have also been compared to related models in database theory, e. g. graph databases [4]
and information extraction [20, 24].

Following the original paper by Brüggemann-Klein and Wood [9], deterministic regular
expressions have been studied extensively. Aspects include computing the Glushkov au-
tomaton and deciding the membership problem (e. g. [8, 31, 43]), static analysis (cf. [40]),
deciding whether a regular language is deterministic (e. g. [16, 31, 39]), closure properties
and descriptional complexity [37], and learning (e. g. [5]). One noteworthy extension are
counter operators (e. g. [29, 31, 36]), which we briefly address in Section 7.
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2 Preliminaries

We use ε to denote the empty word. The subset and proper subset relation are denoted by ⊆
and ⊂, respectively. Let Σ be a finite terminal alphabet. Unless otherwise noted, we assume
|Σ| ≥ 2. Let Ξ be an infinite variable alphabet with Ξ∩Σ = ∅. Let w ∈ Σ∗, then, for every i,
1 ≤ i ≤ |w|, w[i] denotes the symbol at position i of w. We define w0 : = ε and wi+1 : =wi ·w
for all i ≥ 0, and, for w = a1 · · · an with ai ∈ Σ, let wm+ i

n = wm · a1 · · · ai for all m ≥ 0 and
all i with 0 ≤ i ≤ n. A v ∈ Σ∗ is a factor of w if there exist u1, u2 ∈ Σ∗ with w = u1vu2. If
u2 = ε, v is also a prefix of w.

We use the notions of deterministic and non-deterministic finite automata (DFA and NFA)
like [32]. If an NFA can have ε-transitions, we call it an ε-NFA. Given a class C of language
description mechanisms (e. g., a class of automata or regular expressions), we use L(C) to
denote the class of all languages L(C) with C ∈ C. The membership problem for C is defined
as follows: Given a C ∈ C and a w ∈ Σ∗, is w ∈ L(C)?

2.1 Regex
I Definition 1 (Syntax of regex). We define RX, the set of regex over Σ and Ξ, recursively:
Terminals and ε: a ∈ RX and var(a) = ∅ for every a ∈ (Σ ∪ {ε}).
Variable reference: &x ∈ RX and var(&x) = {x} for every x ∈ Ξ.
Concatenation: (α · β) ∈ RX and var(α · β) = var(α) ∪ var(β) if α, β ∈ RX.
Disjunction: (α∨β) ∈ RX and var(α∨β) = var(α) ∪ var(β) if α, β ∈ RX.
Kleene plus: (α+) ∈ RX and var(α+) = var(α) if α ∈ RX.
Variable binding: 〈x : α〉 ∈ RX and var(〈x : α〉) = var(α)∪{x} if α ∈ RX with x ∈ Ξ \ var(α).
In addition, we allow ∅ as a regex (with var(∅) = ∅), but we do not allow ∅ to occur in any
other regex. An α ∈ RX with var(α) = ∅ is called a proper regular expression, or just regular
expression. We use REG to denote the set of all regular expressions.

We add and omit parentheses freely, as long as the meaning remains clear. We use the
Kleene star α∗ as shorthand for ε∨α+, and A as shorthand for

∨
a∈A a for non-empty A ⊆ Σ.

We define the semantics of regex using the ref-words (short for reference words) by Schmid [45].
A ref-word is a word over (Σ ∪ Ξ ∪ Γ), where Γ : ={[x, ]x, | x ∈ Ξ}. Intuitively, the symbols
[x and ]x mark the beginning and the end of the match that is stored in the variable x,
while an occurrence of x represents a reference to that variable. Instead of defining the
language of a regex α directly, we first treat α as a generator of ref-words by defining
its ref-language R(α). If α ∈ Σ ∪ {ε}, R(α) : ={α}; and R(&x) : ={x} for all x ∈ Ξ.
Furthermore, R(α · β) : =R(α) · R(β), R(α∨β) : =R(α) ∪ R(β), and R(α+) : =R(α)+.
Finally, R(〈x : α〉) : =([xR(α)]x). For regular expressions, L(α) = R(α). Alternatively,
R(α) : =L(αR), where the proper regular expression αR is obtained by replacing each
sub-regex 〈x : β〉 of α with [xβR]x, and each &x with x.

Intuitively speaking, every occurrence of a variable x in some r ∈ R(α) functions as a
pointer to the next factor [xv]x to the left of this occurrence (or to ε if no such factor exists).
In this way, a ref-word r compresses a word over Σ, the so-called dereference D(r) of r, which
can be obtained by replacing every variable occurrence x by the corresponding factor v (note
that v might again contain variable occurrences, which need to be replaced as well), and
removing all symbols [x, ]x ∈ Γ afterwards. See [45] for a more detailed definition, or the
following Example 2 for an illustration. Finally, we define L(α) : ={D(r) | r ∈ R(α)}.

I Example 2. Let α : =
(
〈x : (a∨ b)+〉&x

)+. Then R(α) = {[xw1]x · x · · · [xwn]x · x |
n ≥ 1, wi ∈ {a, b}+}. Hence, L(α) = (Lcopy)+, with Lcopy : ={ww | w ∈ {a, b}+}. Let
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αsq : =
(
〈x : &y〉〈y : &x · a〉

)∗. Then R(αsq) = {
(
[xy]x · [yx · a]y

)i | i ≥ 0}. For example,
consider the ref word r3 = [xy]x · [yx · a]y · [xy]x · [yx · a]y · [xy]x · [yx · a]y with D(r3) = a9.
Using induction, we can verify that D(ri) = ai

2 . Thus, L(αsq) = {an2 | n ≥ 0}.

Hence, unlike regular expressions, regex can define non-regular languages. The expressive
power comes at a price: their membership problem is NP-complete (follows from Angluin [3]),
and various other problems are undecidable (Freydenberger [23]). Starting with Aho [2],
there have been various approaches to specifying syntax and semantics of regex. While [2]
only sketched the intuition behind the semantics, the first formal definition (using parse trees)
was proposed by Câmpeanu, Salomaa, Yu [10], followed by the ref-words of Schmid [45]. For
a comparison between these approaches and actual implementations, see the full version [26].

3 Memory Automata with Trap State

Memory automata [45] are a simple automaton model that characterizes L(RX). Intuitively
speaking, these are classical finite automata that can record consumed factors in memories,
which can be recalled later on in order to consume the same factor again. However, for our
applications, we need to slightly adapt this model to memory automata with trap-state.

I Definition 3. For every k ∈ N, a k-memory automaton with trap-state, denoted by
TMFA(k), is a tuple M = (Q,Σ, δ, q0, F ), where Q is a finite set of states that contains the
trap-state [trap], Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states
and δ : Q× (Σ ∪ {ε} ∪ {1, 2, . . . , k})→ P(Q× {o, c, r, �}k) is the transition function (where
P(A) denotes the power set of a set A), which satisfies δ([trap], b) = {([trap], �, �, . . . , �)},
for every b ∈ Σ ∪ {ε}, and δ([trap], i) = ∅, for every i, 1 ≤ i ≤ k. The elements o, c, r and
� are called memory instructions (they stand for opening, closing and reseting a memory,
respectively, and � leaves the memory unchanged).

A configuration of M is a tuple (q, w, (u1, r1), . . . , (uk, rk)), where q ∈ Q is the current
state, w is the remaining input and, for every i, 1 ≤ i ≤ k, (ui, ri) is the configuration of
memory i, where ui ∈ Σ∗ is the content of memory i and ri ∈ {O, C} is the status of memory
i (i. e., ri = O means that memory i is open and ri = C means that it is closed). The initial
configuration of M (on input w) is the configuration (q0, w, (ε, C), . . . , (ε, C)), a configuration
(q, w, (u1, r1), . . . , (uk, rk)) is an accepting configuration if w = ε and q ∈ F .

M can change from a configuration c = (q, vw, (u1, r1), . . . , (uk, rk)) to a configura-
tion c′ = (p, w, (u′1, r′1), . . . , (u′k, r′k)), denoted by c `M c′, if there exists a transition
δ(q, b) 3 (p, s1, . . . , sk) with either (b ∈ (Σ ∪ {ε}) and v = b) or (b ∈ {1, 2, . . . , k}, sb = c and
v = ub), and, for every i, 1 ≤ i ≤ k,

si = �∧ri = O ⇒ (u′
i, r′

i) = (uiv, ri), si = �∧ri = C ⇒ (u′
i, r′

i) = (ui, ri),
si = o ⇒ (u′

i, r′
i) = (v, O), si = c ⇒ (u′

i, r′
i) = (ui, C),

si = r ⇒ (u′
i, r′

i) = (ε, C).
Furthermore, M can change from a configuration (q, vw, (u1, r1), . . . , (uk, rk)) to the con-
figuration ([trap], w, (u1, r1), . . . , (uk, rk)), if δ(q, b) 3 (p, s1, . . . , sk) for some p ∈ Q, b ∈
{1, 2, . . . , k} and sb = c, such that ub = vv′ with v′ 6= ε and v′[1] 6= w[1].

A transition δ(q, b) 3 (p, s1, s2, . . . , sk) is an ε-transition if b = ε and is called consuming,
otherwise (if all transitions are consuming, then M is called ε-free). If b ∈ {1, 2, . . . , k}, it is
called a memory recall transition and the situation that a memory recall transition leads to
the state [trap], is called a memory recall failure.

The symbol `∗M denotes the reflexive and transitive closure of `M . A w ∈ Σ∗ is accepted
by M if cinit `∗M cf , where cinit is the initial configuration of M on w and cf is an accepting
configuration. The set of words accepted by M is denoted by L(M).
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Note that executing the open action o on a memory that already contains some word
discards the previous contents of that memory. For illustrations and examples for TMFA,
we refer to [45]. A crucial part of TMFA is the trap-state [trap], in which computations
terminate, if a memory recall failure happens. If [trap] is not accepting, then TMFA are
(apart from negligible formal differences) identical to the memory automata introduced in
[45], which characterize the class of regex language. If, on the other hand, [trap] is accepting,
then every computation with a memory recall failure is accepting (independent from the
remaining input). While it seems counter-intuitive to define the words of a language via
“failed” back-references, the possibility of having an accepting trap-state yields closure under
complement for deterministic TMFA (see Theorem 6). It will be convenient to consider the
partition of TMFA into TMFArej and TMFAacc (having a rejecting and an accepting trap-state,
respectively).

Every TMFAacc can be transformed into an equivalent TMFArej, which implies L(TMFA) =
L(TMFArej); thus, it follows from [45] that TMFA characterize L(RX). The idea of this
construction is as follows. Every memory i is simulated by two memories (i, 1) and (i, 2),
which store a (nondeterministically guessed) factorisation of the content of memory i. This
allows us to guess and verify if a memory recall failure occurs, i. e., (i, 1) stores the longest
prefix that can be matched and (i, 2) starts with the first mismatch. For correctness, it is
crucial that every possible factorisation of the content of a memory i can be guessed.

I Theorem 4. L(TMFA) = L(TMFArej) = L(RX).

A consequence of the proof is that TMFA inherits the NP-hardness of the membership problem
from RX. We do not devote more attention to this, as we focus on deterministic TMFA: A
TMFA is deterministic (or a DTMFA, for short) if δ satisfies |δ(q, b)| ≤ 1, for every q ∈ Q
and b ∈ Σ ∪ {ε} ∪ {1, 2, . . . , k} (for the sake of convenience, we then interpret δ as a partial
function with range Q× {o, c, r, �}k), and, furthermore, for every q ∈ Q, if δ(q, x) is defined
for some x ∈ {1, 2, . . . , k} ∪ {ε}, then, for every y ∈ (Σ ∪ {ε} ∪ {1, 2, . . . , k}) \ {x}, δ(q, y) is
undefined. Analogously to TMFA, we partition DTMFA into DTMFAacc and DTMFArej.

The algorithmically most important feature of DTMFA is that their membership can be
solved efficiently by running the automaton on the input word. However, for each processed
input symbol, there might be a delay of at most |Q| steps, due to ε-transitions and recalls of
empty memories, which leads to O(|Q||w|). Removing such non-consuming transitions first,
is possible, but problematic. In particular, recalls of empty memories depend on the specific
input word and could only be determined beforehand by storing for each memory whether it
is empty, which is too expensive. However, by O(|Q|2) preprocessing, we can compute the
information that is needed in order to determine in O(k) where to jump if certain memories
are empty, and which memories are currently empty can be determined on-the-fly while
processing the input. This leads to a delay of only k, the number of memories:

I Theorem 5. Given M ∈ DTMFA with n states and k memories, and w ∈ Σ∗, we can
decide in time O(n2 + k|w|), whether or not w ∈ L(M).

Note that the preprocessing in the proof of Theorem 5 is only required once, so we can
solve the membership for several words wi in O(n2 + k

∑
|wi|). Moreover, if it is guaranteed

that no empty memories are recalled, then membership can be solved in O(n+ |w|) (where
O(n) is needed in order to remove ε-transitions).

Similar to DFA, it is possible to complement DTMFA by toggling the acceptance of states.
However, for DTMFA, we have to remove ε-transitions and recalls of empty memories. In
particular, the construction for Theorem 6 uses the finite control to store whether memories
are empty or not, which causes a blow-up that is exponential in the number of memories.
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I Theorem 6. L(DTMFA) is closed under complement.

We next discuss expressive power: If there is a constant upper bound on the lengths of
contents of memories that are recalled in accepting computations of an M ∈ DTMFA, then
memories can be simulated by the finite state control; thus, L(M) ∈ L(REG). Consequently,
if L(M) /∈ L(REG), there is a word uvw that is accepted by recalling some memory with
an arbitrarily large content v. Moreover, if [trap] is non-accepting, then no word can be
accepted that contains u as a prefix, but not uv, since this will cause a memory recall failure.
Intuitively speaking, a DTMFArej for a non-regular language makes arbitrarily large “jumps”:

I Lemma 7 (Jumping Lemma). Let L ∈ L(DTMFArej). Then either L is regular, or for every
m ≥ 0, there exist n ≥ m and pn, vn ∈ Σ+ such that 1. |vn| = n, 2. vn is a factor of pn,
3. pnvn is a prefix of a word from L, 4. for all u ∈ Σ+, pnu ∈ L only if vn is a prefix of u.

I Example 8. Let L : ={ww | w ∈ Σ∗} with |Σ| ≥ 2, which is well-known to be not regular.
Assume L ∈ L(DTMFArej) and choose m : = 1. Then there exist n ≥ 1 and pn, vn ∈ Σ∗ that
satisfy the conditions of Lemma 7. Choose a ∈ Σ that is not the first letter of vn, and define
u : = apna. Then vn is not a prefix of u, but pnu = (pna)2 ∈ L, which is a contradiction.

I Example 9. Let L : ={aibaj | i > j ≥ 0}. Using textbook methods, it is easily shown that
L is not regular. Now, assuming that L ∈ L(DTMFArej), choose m : = 4. Then there exist
n ≥ 4 and pn, vn ∈ Σ+ that satisfy the conditions of Lemma 7. As pnvn is a prefix of a word
in L, either pn = ai or pn = aibaj with i, j ≥ 0 (and i ≥ 4 or i+ j ≥ 3). In the first case,
consider u : = ba. Then pnu = aiba with i ≥ 4; hence, pnu ∈ L. But u starts with b, and
vn is a factor of pn = ai. Contradiction, as vn cannot be a prefix of u. For the second case,
let u : = a. As pnvn is a prefix of a word in L, and as |vn| = n, i > j + n ≥ j + 4 must hold.
Hence, pnu = aibaj+1, and pnu ∈ L. Contradiction, as vn is not a prefix of u.

For unary languages, there is an alternative to Lemma 7 that is easier to apply and
characterizes unary DTMFArej-languages. It is built on the following definition: A language
L ⊆ {a}∗ is an infinite arithmetic progression if L = {abi+c | i ≥ 0} for some b ≥ 1, c ≥ 0.

I Lemma 10. Let L ∈ L(DTMFArej) be an infinite language with L ⊆ {a}∗. The following
conditions are equivalent: 1. L is regular. 2. L contains an infinite arithmetic progression.
3. There is b ≥ 1 such that, for every n ≥ 0, abi+cn ∈ L for some cn ≥ 0 and all 0 ≤ i ≤ n.

I Example 11. Let α : =〈x : aa+〉(&x)+ (this regex is also known as “Abigail’s expression” [1]
in the PERL community). Then L(α) = {amn | m,n ≥ 2}. In other words, α generates the
language of all ai such that i is a composite number (i. e., not a prime number). As L(α) is not
regular and contains the arithmetic progression 2i+4, Lemma 10 yields L(α) /∈ L(DTMFArej).

The following result is a curious consequence of Lemma 10:

I Proposition 12. Over unary alphabets, L(DTMFArej) ∩ L(DTMFAacc) = L(REG).

4 Deterministic Regex

In order to define deterministic regex as an extension of deterministic regular expressions,
we first extend the notion of a marked alphabet that is commonly used for the latter:
For every alphabet A, let Ã : ={a(n) | a ∈ A,n ≥ 1}. For every α ∈ RX, we define α̃
as a regex that is obtained by taking αR (the proper regular expression over Σ ∪ Ξ ∪ Γ
that generates the ref-language R(α)), and marking each occurrence of χ ∈ (Σ ∪ Ξ ∪ Γ)
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by a unique number (to make this well-defined, we assume that the markings start at
1 and are increased stepwise). For example, if α : =〈y : (a∨&x)∗ · (ε∨ b · a)〉 · &y, then
α̃ = [y(1)(a(2) ∨x(3))∗ · (ε∨ b(4) · a(5))]y(6) · y(7). We also use these markings in the ref-words:
For example, [y(1)a(2)a(2)x(3)a(2)]y(6)y(7) ∈ R(α̃).

Before we explain this definition and use it to define deterministic regex, we first discuss
the special case of deterministic regular expressions: A proper regular expression α is not
deterministic if there exist words u, v1, v2 ∈ Σ̃∗, a terminal a ∈ Σ and positions i 6= j such
that ua(i)v1 and ua(j)v2 are elements of L(α̃) (see e. g. [9, 31]). Otherwise, it is a deterministic
proper regular expression (or, for short, just deterministic regular expression).

The intuition behind this definition is based on the Glushkov construction for the
conversion of regular expressions into finite automata, as a regular expression α is deterministic
if and only if its Glushkov automaton M(α) is deterministic. Given a regular expression
α, we defineM(α) in the following way: First, we use the marked regular expression α̃ to
construct its occurrence graph1 Gα̃, a directed graph that has a source node src, a sink node
snk, and one node for each a(i) in α̃. The edges are constructed in the following way: Each
node a(i) has an incoming edge from src if a(i) can be the first letter of a word in L(α̃),
and an outgoing edge to snk if it can be the last letter of such a word. Furthermore, for
each factor a(i)b(j) that occurs in a word of L(α̃), there is an edge from a(i) to b(j). As a
consequence, there is a one-to-one-correspondence between marked words in L(α̃) and paths
from src to snk in Gα̃. To obtainM(α), we directly interpret Gα̃ as NFA over Σ: The source
src is the starting state, each node a(i) is a state qi, and an edge from a(i) to b(j) corresponds
to a transition from qi to qj when reading b. The sink snk does not become a state; instead,
each node with an edge to snk is a final state (hence,M(α) contains the source state, and
one state for every terminal in α). This interpretation allows us to treat occurrence graphs
as an alternative notation for a subclass of NFA (namely those where the starting state is not
reachable from other states, and for each state q, there is a characteristic terminal aq such
that all transitions to q read aq). When doing so, we usually omit the occurrence markings
on the nodes in graphical representations.

Intuitively,M(α) treats each terminal of α as a state. Recall that α is not deterministic if
there exists words ua(i)v1 and ua(j)v2 in L(α̃) with i 6= j. This corresponds to the situation
where, after reading u,M(α) has to decide between states a(i) and a(j) for the input letter a.

I Example 13. Let α : =(ε∨((a∨ b)+a)). Then α̃ = (ε∨((a1 ∨ b2)+a3)), and M(α), the
Glushkov automaton of α, is defined as follows:

a(1)

b(2)

a(3) 1 3

2

a

b ba a

a

a

b

To the left, M(α) is represented as an occurrence graph, to the right in standard NFA
notation. ThenM(α) and α are both not deterministic: ForM(α), consider state 1; for α,
consider u = a(1), v1 = a(3), v2 = ε, and the words ua(1)v1 and ua(3)v2.

1 Most literature, like [9], defines the occurrence graph only implicitly by using sets first, last, and follow,
which correspond to the edge from src, the edges to snk, or to the other edges of the graph, respectively.
The explicit use of a graph is taken from the k-occurrence automata by Bex et al. [5]. We shall see that
an advantage of graphs is that they can be easily extended by describing memory actions to the edges.
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As shown in [9], L(DREG) ⊂ L(REG) (also see [16, 39], or Lemma 23 below). Like for
determinism of regular expressions, the key idea behind our definition of deterministic regex
is that a matcher for the expression treats terminals (and variable references) as states.
Then an expression is deterministic if the current symbol of the input word always uniquely
determines the next state and all necessary variable actions. For regular expressions, non-
determinism can only occur when the matcher has to decide between two occurrences of the
same terminal symbol; but as regex also need to account for non-determinism that is caused
by variable operations or references, their definition of non-determinism is more complicated.

I Definition 14. An α ∈ RX is not deterministic if there exist ρ1, ρ2 ∈ R(α̃) such that any
of the following conditions is met for some r, s1, s2 ∈ (Σ̃ ∪ Ξ̃ ∪ Γ̃)∗ and γ1, γ2 ∈ Γ̃∗:
1. ρ1 = r · γ1 · a(i) · s1 and ρ2 = r · γ2 · a(j) · s2 with a ∈ Σ and i 6= j,
2. ρ1 = r · γ1 · x(i) · s1 and ρ2 = r · γ2 · χ(j) · s2 with x ∈ Ξ, χ ∈ (Σ ∪ Ξ) and i 6= j,
3. ρ1 = r · γ1 · χ(i) · s1 and ρ2 = r · γ2 · χ(i) · s2 with χ ∈ (Σ ∪ Ξ) and γ1 6= γ2,
4. ρ1 = r · γ1 and ρ2 = r · γ2 with γ1 6= γ2.
Otherwise, α is deterministic. We use DRX to denote the set of all deterministic regex, and
define DREG : = DRX∩REG as the set of deterministic regular expressions.

I Example 15. Let α1 : =(〈x : a〉 ∨ a), α2 : =(a∨&x), α3 : =(〈x : ε〉 ∨ ε)a, α4 : =(〈x : ε〉 ∨ ε).
None of these regex are deterministic, as each αi meets the i-th condition of Definition 14.
We discuss this for α1: Observe α̃1 = ([x(1)a(2)]x(3))∨ a(4). Then choosing ρ1 = [x(1)a(2)]x(3)
and ρ2 = a(4), with r = ε, γ1 = [x(1), s1 = ]x(3), and γ2 = s2 = ε shows the condition is met.

Let β1 : =〈x : (a∨ b)∗〉c ·&x and β2 : =
(
〈x : &y〉〈y : &x ·a〉

)∗. Both regex are deterministic,
with L(β1) : ={wcw | w ∈ {a, b}∗} and L(β2) = {an2 | n ≥ 0} (see Example 2).

Condition 1 of Definition 14 describes cases where non-determinism is caused by two
occurrences of the same terminal (γ1 and γ2 are included for cases like α1 in Example 15).
If restricted to regular expressions, it is equivalent to the usual definition of deterministic
regular expressions. Condition 2 expresses that the matcher has to decide between a variable
reference and any other symbol; while in condition 3, the symbol is unique, but there is a
non-deterministic choice between variable operations. Finally, condition 4 describes cases
where the behavior of variables is non-deterministic after the end of the word (while one
could consider this edge case deterministic, this choice simplifies recursive definitions). In
conditions 3 and 4, the definition not only requires that it is clear which variables are reset, but
also that it is clear which part of the regex acts on the variables. Hence, (〈x : ε〉 ∨〈x : ε〉) is also
not deterministic. This is similar to the notion of strong determinism for regular expressions,
see [29]. As one might expect, some non-deterministic regexes define DRX-languages:

I Example 16. Let Σ = {0, 1} and α : = 1+〈x : 0∗〉(1+&x)∗1+. This regex was introduced
by Fagin et al. [20], who call its language the “uniform-0-chunk language”. Obviously, α is
not deterministic (in fact, it satisfies conditions 1, 2, and 3 of Definition 14). Nonetheless, it
is possible to express L(α) with the deterministic regex 1

(
1+ ∨

(
0〈x : 0∗〉1+(0 ·&x · 1+)∗

))
.

We now discuss the conversion from DRX to DTMFArej, which generalizes the Glushkov
construction of M(α) for regular expressions. The core idea is extending the occurrence
graph to a memory occurrence graph Gα̃, which has two crucial differences: First, instead of
only considering terminals, each terminal and each variable reference of a regex α becomes a
node. Second, each edge is labeled with a ref-word from Γ̃∗ that describes the memory actions
(hence, there can be multiple edges from one node to another). In analogy to the occurrence
graph, each memory occurrence graph can be directly interpreted as an ε-free TMFArej.
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I Theorem 17. Let α ∈ RX, and let n denote the number of occurrences of terminals and
variable references in α. We can construct an n+2 state TMFArej M(α) with L(M(α)) = L(α)
that is deterministic if and only if α is deterministic. In time O(|Σ||α|n), the algorithm
either 1. computesM(α) if α is deterministic, or 2. detects that α is not deterministic.

I Example 18. Consider the deterministic regex α : =〈x : (a∨ b)+〉 · d ·&x. Applying the
markings yields α̃ : = [x(1)(a(2) ∨ b(3))+]x(4) · d(6) ·x(7), andM(α) is the following automaton:

a(2)

b(3)

d(6) x(7)

[x(1)

[x(1)

]x(4)

]x(4)

2

3

6 7

a, o

b, o

a, �

b, �

b, �a, �
d, c

d, c

1, c

To the left,M(α) is represented as the memory occurrence graph Gα̃, to the right as the
DTMFA that can be directly derived from this graph (which uses memory 1 for x).

The construction from the proof of Theorem 17 behaves like the Glushkov construction for
regular expressions, with one important difference: On regex that are not deterministic, its run-
ning time may be exponential in the number of variables; as there are non-deterministic regex
where conversion into a TMFA without ε-transitions requires an exponential amount of transi-
tions. E. g., for k ≥ 1, let α : = a · (ε∨〈x1 : ε〉) · · · (ε∨〈xk : ε〉) ·b and β : = a

(∨
1≤i≤k〈xi : ε〉

)∗
b.

An automaton that is derived with a Glushkov style conversion then contains states q1 and
q2 that correspond to the terminals; and between these two states, there must be 2k different
transitions to account for all possible combinations of actions on the variables. This suggests
that converting a regex into a TMFA without ε-edges is only efficient for deterministic regex;
while in general, it is probably advisable to use a construction with ε-edges.

By combining Theorems 17 and 5, due to n ≤ |α|, we immediately obtain the following:

I Theorem 19. Given α ∈ DRX with n occurrences of terminal symbols or variable references
and k variables, and w ∈ Σ∗, we can decide in time O(|Σ||α|n+ k|w|), whether w ∈ L(α).

If we ensure that recalled variables never contain ε (or that only a bounded number of
variables references are possible in a row), we can even drop the factor k. For comparison, the
membership problem for DREG can be decided in time O(|Σ||α|+ |w|) when using optimized
versions of the Glushkov construction (see [8, 43]), and in O(|α|+ |w| · log log |α|) with the
algorithm by Groz, Maneth, and Staworko [31] that does not compute an automaton.

5 Expressive Power

While Câmpeanu, Salomaa, Yu [10] and Carle and Narendran [11] state pumping lemmas for a
class of regex, these do not apply to regex as defined in this paper. However, Lemmas 7 and 10,
introduced in Section 3, shall be helpful for proving inexpressibility. A consequence of
Lemma 10 is that there are infinite unary DTMFArej-languages that are not pumpable (in
the sense that certain factors can be repeated arbitrarily often), as this would always lead
to an arithmetic progression. It is also possible to demonstrate this phenomenon on larger
alphabets, without relying on a trivial modification of the unary case:

I Example 20. The Fibonacci word Fω is the infinite word that is the limit of the sequence
of words F0 : = b, F1 : = a, and Fn+2 : =Fn+1 · Fn for all n ≥ 0. The Fibonacci word has a
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number of curious properties. In particular, it includes no cubes (i. e., factors www, with
w 6= ε). This and various other properties are explained throughout Lothaire [38]. Let

α : = a〈x0 : b〉〈x1 : a〉
(
〈x2 : &x1&x0〉〈x3 : &x1&x0&x1〉〈x0 : &x3&x2〉〈x1 : &x3&x2&x3〉

)∗
.

Then L(α) = {F4i+3 | i ≥ 0}. Hence, the words of L(α) converge towards Fω. The proof of
this equivalence is straightforward, but long. It uses that Fn+3 = Fn+1 · Fn · Fn+1 holds for
all n ≥ 0 As Fω contains no cube, the same applies to all Fn. Thus, L(α) is a DRX-language
that cannot be pumped by repeating factors of sufficiently large words arbitrarily often.

For further separations, we use the following language:

I Example 21. Let α : = a2 ·〈x : a2〉·
(
〈y : &x·&x〉·〈x : &y ·&y〉

)∗. Then L(α) = {a4i | i ≥ 1}.

From this, we define an L ∈ L(TMFA) with neither L ∈ L(DTMFArej), nor L ∈ L(DTMFAacc):

I Lemma 22. Let L : ={a4i+1 | i ≥ 0} ∪ {a4i | i ≥ 1}. Then L ∈ L(TMFA) \ L(DTMFA).

While DTMFArej-inexpressibility provides us with a powerful sufficient criterion for DRX-
inexpressibility, it is not powerful enough to cover all cases of DRX-inexpressibility. In
particular, there are even regular languages that are no DRX-languages:
I Lemma 23. Let L : =L

(
(ab)∗(a∨ ε)

)
= {(ab) 1

2 i | i ≥ 0}. Then L ∈ L(REG) \ L(DRX).

The language L from Lemma 23 is also known to be a non-deterministic regular language (see
e. g. [9]). Our proof can be seen as taking the idea behind the characterization of deterministic
regular languages from [9], applying it to the specific language L, and also taking variables
into account. While this accomplishes the task of proving that deterministic regex share
some of the limitations of deterministic regular expressions, the approach does not generalize
(at least not in a straightforward manner). In particular, deterministic regex can express
regular languages that are not deterministic regular, and are also quite similar to L:

I Example 24. Let L : ={(ab) 3
2 i | i ≥ 0}. Then L is generated by the non-deterministic

regular expression (ababab)∗(ε∨(aba)), and one can show that L is not a deterministic
regular language by using the BKW-algorithm [9] (also [16, 39]) on the minimal DFA M

for L. But for α : = a〈y : b〉〈x : a〉
(
〈z : &y〉〈y : &x〉〈x : &z〉

)∗, α ∈ DRX and L(α) = L.

The “shifting gadget” that is used in Example 24 can be extended to show a far more general
result for unary languages. Considering that L(DREG) ⊂ L(REG) holds even over unary
alphabets (cf. Losemann et al. [37]), the following result might seem surprising:

I Theorem 25. For every regular language L over a unary alphabet, L ∈ L(DRX).

As a DFA with n states is converted into a deterministic regex of length O(n), this construction
is even efficient. We summarize our observations (also see Figure 1):

I Theorem 26. L(DREG) ⊂ L(DRX) ⊂ L(DTMFArej) ⊂ L(DTMFA) ⊂ L(TMFA) = L(RX).
The following pairs of classes are incomparable: L(DRX) and L(REG), L(DRX) and

L(DTMFAacc), as well as L(DTMFArej) and L(DTMFAacc).

We can also use the examples from this section to show that L(DRX) and L(DTMFArej) are
not closed under most of the commonly studied operations on languages:

I Theorem 27. L(DRX) and L(DTMFArej) are not closed under the following operations:
union, concatenation, reversal, complement, homomorphism, and inverse homomorphism.
L(DRX) is also not closed under intersection, and intersection with DREG-languages.
We leave open whether L(DTMFArej) is closed under intersection (with itself or with L(DREG)),
but we conjecture that this is not the case. We also leave open whether L(DRX) and
L(DTMFArej) are closed under Kleene plus or star.
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L(DREG)

L(DRX)

L(REG)

L(DTMFArej)

L(DTMFAacc)

L(DTMFA) L(TMFA) = L(RX)

Figure 1 The proper inclusions from Theorem 26. Arrows point from sub- to superset.

6 Two Variants of Determinism

In this section, we examine a restriction and an extension of DRX and DTMFA. We begin
with the restriction, which we motivate with the following observation: As shown by Carle
and Narendran [11], the intersection problem for regex is undecidable. For DRX, that proof
cannot be used, but the result still holds (and by Theorem 17, this extends to DTMFA):

I Theorem 28. Given α, β ∈ DRX, it is undecidable whether L(α) ∩ L(β) = ∅.

As a consequence, DTMFA intersection emptiness problem is also undecidable. Theorem 28
applies even to very restricted DRX, as no variable binding contains a reference to another
variable, | var(α)| = 2, and | var(β)| = 3. Hence, bounding the number of variables does not
make the problem decidable. Instead, the key part seems to be that the variables occur
under Kleene stars, which means that they can be reassigned an unbounded amount of times.
Following similar observations, Freydenberger and Holldack [25] introduced the following
concept: A regex is variable-star-free (vstar-free) if each of its plussed sub-regexes contains
neither variable references, nor variable bindings. Analogously, we call a TMFA memory-
cycle-free if it contains no cycle with a memory transition (a transition in a TMFA that is a
memory recall, or that contains memory actions other than �). Let RXvsf be the set of all
vstar-free regex, and DRXvsf = RXvsf ∩DRX. Let TMFAmcf be the set of all memory-cycle-free
TMFA, and define DTMFAmcf , TMFArej

mcf ,. . . analogously. The proof of Theorem 17 allows us
to conclude thatM(α) ∈ DTMFAmcf holds for every α ∈ DRXvsf . Likewise, we can use the
proof of Theorem 4 to conclude L(TMFAmcf) = L(RXvsf). Note that for ε-free DTMFAmcf ,
the membership problem can be decided in time O(|Q|+ |w|), as the preprocessing step of
Theorem 5 is not necessary (as only a bounded number of variable references is possible in
each run). Likewise, we can drop the factor k from Theorem 19 when restricted to DRXvsf .

As shown by Freydenberger [24], it is decidable in PSPACE whether
⋂n
i=1 L(αi) = ∅

for α1, . . . , αn ∈ RXvsf . By combining the proof for this with some ideas from another
construction from [24], we encode the intersection emptiness problem for TMFAmcf in the
existential theory of concatenation with regular constraints (a PSPACE-decidable, positive
logic on words, see Diekert [17], Diekert, Jeż, Plandowski [19]). This yields the following:

I Theorem 29. Given M1, . . . ,Mn ∈ TMFAmcf , we can decide whether
⋂n
i=1 L(Mi) = ∅ in

PSPACE. The problem is PSPACE-hard, even if restricted to L(α) ∩ L(β), α ∈ DRXvsf and
β ∈ DREG (if the size of Σ is not bounded), or to L(α) ∩ L(M), α ∈ DRXvsf and M ∈ DFA.

The unbounded size of Σ comes from the PSPACE-hardness of the intersection emptiness
problem for DRX by Martens et al. [40], which has the same requirement. Using the existential
theory of concatenation for the upper bound might seem conceptually excessive – but this
cannot be avoided (see Section A.18 in the full version of the paper [26]).

We now combine the proofs of Theorems 6 and 29, and observe:

I Theorem 30. Given M1,M2 ∈ DTMFAmcf , L(M1) ⊆ L(M2) can be decided in PSPACE.
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Obviously, this implies that equivalence for DTMFAmcf is decidable in PSPACE, and, further-
more, this also holds for DRXvsf , which is an interesting contrast to non-deterministic RXvsf :
As shown by Freydenberger [23], equivalence (and, hence, inclusion and minimization) are
undecidable for RXvsf (while [23] does not explicitly mention the concept, the regex in that
proof are vstar-free, as discussed in [25]). Hence, Theorem 30 also yields a minimization
algorithm for DRXvsf and DTMFAmcf that works in PSPACE (enumerate all smaller candidates
and check equivalence). We leave open whether this is optimal, but observe that even for
DREG, minimization is NP-complete, see Niewerth [42].

Next, we discuss a potential extension of determinism. One could argue that Definition 14
is overly restrictive; e. g., consider α : =〈x : a+〉〈y : b+〉c(&x∨&y). Then α is not determin-
istic; but as the contents of x and y always start with a or b (respectively), deterministic
choices between &x and &y are possible by looking at the current letter of the input word.
Analogous observations can be made for TMFA. More precisely, we define the notion of
`-deterministic TMFA as a relaxation of the criteria of DTMFA: In contrast to the latter, an
`-deterministic TMFA can have states q with multiple memory recall-transitions, as long as
these recall distinct memories, and if q is reached in some computation, then for each pair of
these recalled memories, the contents differ in the first ` positions. First, note that this does
not increase the expressive power (intuitively, storing the length ` prefixes of the memory
contents allows making `-deterministic memory recall transitions deterministic):

I Proposition 31. Let ` ≥ 1. For every `-deterministic M ∈ DTMFA, there is an M ′ ∈
DTMFA with L(M) = L(M ′).

For the sake of the argument, let α ∈ RX be `-deterministic if and only ifM(α) is.

I Proposition 32. For every ` ≥ 1, deciding whether a TMFA is `-deterministic is PSPACE-
complete. The problem is coNP-complete if the input is restricted to TMFAmcf . These lower
bounds hold even if we restrict the input to RX and RXvsf , respectively.

Hence, while we can decide efficiently whether a TMFA or a regex is deterministic, detecting `-
determinism is costly, even for ` = 1. The same holds if we adapt the definition to distinguish
between variables and terminals (see Section A.21 in the full version of the paper [26]).

7 Conclusions and Further Directions

Based on TMFA, an automaton model for regex, we extended the notion of determinism
from regular expressions to regex. Although the resulting language class cannot express all
regular languages, it is still rich; and by using a generalization of the Glushkov construction,
deterministic regex can be converted into a DTMFA, and the membership problem can then be
solved quite efficiently. Although we did not discuss this, the construction is also compatible
with the Glushkov construction with counters by Gelade, Gyssens, Martens [29]. Hence, one
can add counters to DRX and DTMFA without affecting the complexity of membership.

Many challenging questions remain open, for example: Can the more advanced results for
DREG be adapted to DRX, i. e., canM(α) be computed more efficiently (as in [8, 43]), or is
it even possible, like in [31], to avoid computingM(α)? Is effective minimization possible for
DTMFA or DRX? Is it decidable whether a DTMFA defines a DRX-language? Are inclusion
and equivalence decidable for DRX or DTMFA? Can determinism be generalized to larger
classes of regex without making the membership problem intractable?
Acknowledgements. The authors thank Wim Martens for helpful feedback, Matthias
Niewerth, for pointing out that vn must be a factor of pn in the jumping lemma, and Martin
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A Appendix

A.1 Regex in Theory and Practice
In this section, we motivate the choice of the formalization of regex syntax and semantics
that are used in the current paper, in particular in comparison to [10], and then connect
these to the use of back-references in actual implementations.

Choices behind the definition: We begin with a discussion of semantics of back-references,
which most actual implementations define2 in terms of the used matching algorithm. For
a theoretical analysis, this approach is not satisfactory. Câmpeanu, Salomaa, Yu [10] then
proposed a definition using parse trees, which was precise, but rather technical and unwieldy.
Schmid [45] then introduced the definition with ref-words that we use in the current paper.
Both definitions are equivalent, with a caveat that we discuss below.

The most obvious difference in approaches to syntax is that some formalizations, like [10],
do not use variables, but numbered back-references. For example, 〈x : a∗〉b ·&x would be
written as (a∗)b\1, where \1 refers to the content of the first pair of parentheses (called the
first group).

After working with this definition for some time, the authors of the present paper came to
the conclusion that using numbered back-references instead of named variables is inconvenient
(both when reading and writing regex). The developers of actual implementations seem to
agree with this sentiment: While using numbered back-references was well-motivated when
considering PERL at the time [10] was published, most current regex dialects allow the use
of named groups, which basically act like our variables (depending on the actual dialect, see
below). The choice between variables and numbered groups is independent of the choice of
semantics, as parse trees can also be used with variables, see [23]. Hence, using variables
instead of numbers is a natural choice.

Building on this, the next question is whether the same variable can be bound at different
places in the regex, i. e., whether one allows expressions like(

〈x : a+〉〈y : b+〉
)
∨
(
〈y : b+〉〈x : a+〉

)
c ·&x ·&y.

While some implementations that have developed from back-references forbid theses con-
structions to certain degrees (again, see below), there seems to be no particular reason for
this decision when approaching this question without this historical baggage. In fact, one can
argue from a point of applications that expressions like the following make sense (abstracting
away some details that would be needed in actual use):

Σ∗
((

Name:〈x : Σ+〉 Title:〈y : Σ+〉
)
∨
(
Title:〈y : Σ+〉 Name:〈x : Σ+〉

))
Σ∗

In fact, these constructions are explicitly allowed in the regex formulas of Fagin et al. [20],
that are closely related to regex. In particular, both the semantic definitions (ref-words
and parse trees) allow this choice. Thus, there seems to be no particular practical reason
to disallow these constructions when considering only the model (instead of its algorithmic
properties).

The regex definition in [10] also includes a syntactic restriction that changes the expressive
power considerably: It requires that a backreference \n can only appear in a regex if it occurs

2 From a theory point of view, this is a generous use of the term “define”.
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to the right of corresponding group number n. In [10], otherwise, the expression is called
a “semi-regex”. Consider αsq =

(
〈x : &y〉〈y : &x · a〉

)∗ from Example 2. In the numbered
notation of [10], this would be expressed as β : =

(
(2\3)2(3\2 · a)3

)∗, when adding group
numbers to the groups to increase readability. But using definitions from [10], β is only a
semi-regex, as the reference \3 occurs to the left of group 3.

The motivation behind this restriction is not explained in [10]. While one might argue
that this was chosen to avoid referencing unused groups, the definition of semantics in [10]
still needs to deal with this problem in regexes like ((1a)1 ∨(2a)2) ·\1 ·\2, and handles them by
assigning ε (like the definition from [45], which we use as well). Hence, even on “semi-regex”,
the parse tree semantics behave like the ref-word semantics.

Arguably, the restriction has an advantage from a theoretical point of view, as it allows
Câmpeanu, Salomaa, Yu [10] and Carle and Narendran [11] to define pumping lemmas for
this class. Using these, it is possible to show that languages like L(αsq) from Example 2 or
the language from Example 20 cannot be expressed with the regex model from [10]. But in
other areas, there seems to be no advantage in this choice: Even under this restriction, the
membership problem is NP-complete (since it is still possible to describe Angluin’s pattern
languages [3]), the undecidability results from [23] on various problems of static analysis are
unaffected by this choice, and even the proof of Theorem 28 directly works on this subclass.
In summary, the authors of the current paper see no reason to adapt this restriction.

For full disclosure, the second author points out that he misinterpreted the regex definition
of [10] when citing the paper in his own articles [44, 45]. All mentions of “regex” in those
papers refer to the expressions that are called “semi-regex” in [10]. Hence, although those
papers refer to [10] for the full definition of regex, they talk about the language class L(RX)
of the current paper.

The last choice in the definition that we need to address is how we deal with referencing
undefined variables. Both [10] and [45] default those references to ε (as do others, like [23]);
but there is also literature, like [11], that uses ∅ as default value (under these semantics, a
ref-word that contains a variable that de-references to ∅ cannot generate any terminal words;
the same holds for a parse tree that contains such a reference). This choice can easily be
implemented in both semantics by discarding a ref-word or parse tree that contains such
a reference; and a TMFA can reject if a run encounters a reference to such an undefined
memory.

While these “∅-semantics” are also used in some actual implementations, the authors of
the current paper are against this approach. One of the reasons is that using ∅ as default
allows the use of curious synchronization effects that distract from the main message of this
paper. For example, let Σ = {a1, . . . , an} for some n ≥ 1, and define

αn : =
( n∨
i=1

(ai · 〈xi : ε〉)
)n ·&x1 · · ·&xn.

If unbound variables default to ∅, this regex generates the language{
aπ(1) · · · aπ(n) | π is a permutation of {1, . . . , n}

}
,

as every variable xi needs to be assigned ε exactly once (otherwise, a reference would return
∅ and block). Hence, using this semantics, even variables that are bound only to ε can be
used for synchronization effects. While this can lead to interesting constructions, the authors
think that it provides more insight to study the effects of back-references on lower bounds
without relying on these additional features. This way, there is no question whether the
hardness of the examined problems is due to the effects of the ∅-semantics.
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Furthermore, all examples in the present paper can be adapted from the used ε-semantics
to ∅-semantics: Given an α ∈ RX with variables x1, . . . , xk, define α′ : =〈x1 : ε〉 · · · 〈xk : ε〉 · α.
First, we observe that the language that is defined by α′ under ∅-semantics is the same
language that α defines under ε-semantics. Furthermore, note that if α is deterministic, α′ is
also deterministic. The analogous construction can be used for TMFA (and DTMFA).

While it is possible to adapt most of the results in the current paper directly to this
alternative semantics, the authors chose to keep the paper focused on ε-semantics.

Actual implementations: We now give a brief overview of how back-references are used
in some actual implementations. For a good introduction on various dialects, the authors
recommend [30], in particular the section on back-references and named groups. As this
behavior is often under-defined, badly documented, and implementation dependent, this can
only be a very short and superficial summary of some behavior.

Before we go into details, we address why back-references are used, in spite of the resulting
NP-hard membership problem: Most regex libraries use a backtracking algorithm that can
have exponential running time, even on many proper regular expressions (see Cox [15]).
From this point of view, back-references can be added with little implementation effort and
without changing the efficiency of the program.

Most modern dialects of regex not only support numbered back-references as used by [10],
but also named capture groups, which work like our variables. In some dialects like e. g.
Python, PERL, and PCRE, these act as aliases for back-references with numbers; hence,
〈x : a∗〉b&x would be interpreted as (a∗)b\1. As a consequence, each name resolves to
a well-defined number. As some of these dialects assign the empty set as default value
of unbound back-references (or group names), the resulting behavior is similar implicitly
requiring the restriction from [10]. This implementation of named capture groups seems to
be mostly for historical reasons (as back-references were introduced earlier).

In contrast to this, there are other dialects that use numbered back-references and
explicitly allow references to access groups that occur to their right in the expression. For
example, the W3C recommendation for XPath and XQuery functions and operators [33]
defines regular expressions with back-references for the use in fn:matches. There, it is
possible to refer to capture groups that occur to the right of the reference (although only
for the capture groups 1 to 9, but not for 10 to 99, which might be considered a peculiar
decision). As this dialect defaults unbound references to ε, it is possible to directly express
αsq by renaming the variable references to back-references.

Furthermore, .NET allows names to be used for many different groups, for example
((〈x : a+〉 ∨〈x : b+〉c)&x)∗. While .NET defaults unset variables to ∅, it is possible to express
L(αsq), by using an expression like 〈x : ε〉 · αsq. In the same way, every regex in the sense of
our paper can be converted into an equivalent .NET regex.

Finally, in 2007 (just four years after the publication of [10]), PERL 5.10 introduced
branch reset groups (which were also adapted in PCRE). These reset the numbering inside
disjunctions, and allow expressions that behave like ((〈x : a+〉 ∨〈x : b+〉c)&x)∗. This allows
PERL regex to replicate a large part of the behavior of .NET regex.

In conclusion, it seems that almost every formalization of regex syntax and semantics
can be justified by finding the right dialect; but every restriction might be superseded by the
continual evolution of regex dialects. Hence, the current paper attempts to avoid restrictions;
and when in doubt, we choose natural definitions over trying to directly emulate a single
dialect. Therefore, we use variables instead of numbered back-references, and allow multiple
uses of the same variable name.
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Figure 2 Possible configuration changes of a fixed memory.

The authors acknowledge that most actual implementations of “regular expressions” allow
additional operators. Common features are counters, which allow constructions like e. g.
a2,5 that define the language {ai | i ∈ {2, . . . , 5}}, character classes and ranges, which are
shortcuts for sets like “all alphanumeric symbols” or “all letters from b to y”, and look
ahead and look behind, which can be understood as allowing the expression to call another
expressions as a kind of subroutine.

While these operators are outside of the scope of the current paper, we briefly address
the issue of counters. These are used in XML DTDs and XML Schema, and were studied
in connection to determinism. In particular, Gelade, Gyssens, Martens [29] described
how counters can be added to finite automata and proposed an appropriate extension of
determinism and Glushkov construction to this model. Although the current paper does not
address this matter (in order to keep the paper focussed), the TMFA that we introduce in
Section 3 can also be extended with counters (like the extension to NFA in [29]). Likewise,
the Glushkov constructions of [29] and the current paper can be combined, as can the notions
of determinism. The membership problem for the resulting class of deterministic regex with
counters can then be solved as efficiently as for deterministic regex (see Theorem 19).

A.2 Examples and Illustrations for Memory Automata with Trap State

Intuitively speaking, in a single step of a computation of a TMFA, we first change the
memory statuses according to the memory instructions si, 1 ≤ i ≤ k, and then a (possibly
empty) prefix v of the remaining input (v is either from Σ ∪ {ε} or it equals the content
of some memory that, according to the definition, has been closed by the same transition)
is consumed and appended to the content of every memory that is currently open (note
that here the new statuses after applying the memory instructions count). The changes of
memory configurations caused by a transition are illustrated in Figure 2 (by ε and ε, we
denote an empty or non-empty memory content, respectively; the instruction � is omitted).

I Example 33. Consider the following TMFArej M with two memories over Σ = {a, b}:

q0 q1 q2 q3 q4

a, o, �

b, o, �

a, �, �
b, �, �

a, c, o

b, c, o

a, �, �
b, �, �

2, �, c 1, c, �

ε, �, �
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This TMFA works as follows. First, we record a non-empty word over {a, b} in the first
memory, then a non-empty word over {a, b} in the second memory, and then these words are
repeated in reverse order by first recalling the second and then the first memory (note that
in the transition from q3 to q4, an already closed memory is closed again, since according to
Definition 3, every memory that is recalled must be closed in the same transition). Due to
the ε-transition from q4 to q0, M describes the Kleene-plus of such words, i. e., L(M) = L(α),
where α = (〈x : (a∨ b)+〉〈y : (a∨ b)+〉 ·&y ·&x)+ = ({uvvu | u, v ∈ {a, b}+})+.

Note that each of the two memory recall transitions closes the respective memory. This is
required by definition, as a transition can only recall a memory if it ensures that it is closed.

I Example 34. Consider the following TMFArej M with two memories over Σ = {a, b, d}:

q0 q1 q2 q3 q4 q5 q6
ε, o, �

a, �, �

ε, �, o

b, �, �

ε, c, �

d, �, �

ε, �, c 1, c, � 2, �, c

The behavior of M can be described as follows: First, M opens memory 1 and reads ai,
i ≥ 0. After that, M opens the second memory, reads bj , j ≥ 0, closes the first memory,
reads dk, k ≥ 0, and closes the second memory. Hence, after reading aibjdk, the first
memory contains aibj , and the second bjdk. Finally, M recalls memory 1 and then 2. Hence,
L(M) = {aibjdkaibjbjdk | i, j, k ≥ 0}.

Now, note that in each input word w, memory 2 is opened and closed after memory 1.
Hence, if j > 0, the areas in w where the two memories are open overlap, instead of being
nested. This cannot happen in a regex, as it is ensured from the syntax of variable bindings
that these “areas” in the word are properly nested. For this reason, it seems impossible to
express L(M) with a regex with two variables. But this does not mean that L(M) is not
a regex language, as L(M) = L(α) for α = 〈x : a∗〉〈y : b∗〉〈z : d∗〉 · &x&y · &y&z. In other
words, the key idea is expressing each memory with two variables (one for the overlapping
parts of the memories, and one for each rest).

Clearly, the TMFA of Examples 33 and 34 are not deterministic (in Example 33, there are
different transitions for the same state that consume the same symbol and in Example 34,
there are states for which ε-transitions exists in addition to other transitions). By minor
changes of the TMFA of Example 33, a DTMFA can be easily constructed for the language
({udvdvu | u, v ∈ {a, b}+})+, the details are left to the reader.

A.3 Proof of Theorem 4
We first need the following definition.

An M ∈ TMFA is in normal form if no empty memory is recalled, no open memory is
opened, no memory is reset, and, for every transition δ(q, b) 3 (p, s1, . . . , sk),

if b 6= ε, then si = �, 1 ≤ i ≤ k,
if si 6= �, for some i, 1 ≤ i ≤ k, then b = ε and sj = �, for every j, 1 ≤ j ≤ k, i 6= j.

I Proposition 35. Any TMFA can be transformed into an equivalent TMFA in normal form.

Proof. An arbitrary TMFA can be changed into an equivalent one in normal form as follows.
By introducing ε-transitions, we can make sure that every transition is of the form stated
in the proposition. Furthermore, by adding states, we can keep track of the memory
configurations (i. e., their status and whether or not they are empty (see proof of Theorem 6)).
This allows us to replace transitions that are recalling an empty memory by ε-transitions.
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Furthermore, transitions that open an open memory i are replaced by transitions applying
the memory instructions c and o in this order to memory i, and transitions that reset a
memory i are replaced by transitions applying the memory instructions c, o and c in this
order to memory i. The TMFA is then in normal form and, by definition, these modifications
do not change the accepted language. J

Now, we can state the proof of Theorem 4.

Proof. We first note that L(TMFArej) = L(RX) follows from [45] (we briefly discuss this
at the end of the proof). Since L(TMFArej) ⊆ L(TMFA) and TMFA = TMFArej ∪TMFAacc,
it only remains to prove L(TMFAacc) ⊆ L(TMFArej). To this end, let M be a TMFAacc in
normal form. First, we replace every memory i, 1 ≤ i ≤ k, by two memories (i, 1) and (i, 2)
and we implement in the finite state control a list (x1, x2, . . . , xk) with entries from Σ ∪ {ε},
which initially satisfies xi = ε, 1 ≤ i ≤ k. Then, we change the transitions of M such that
the new memories (i, 1) and (i, 2) simulate the old memory i, i. e., memory i stores some
word u if and only if memories (i, 1) and (i, 2) store u1 and u2, respectively, with u = u1u2.
Moreover, the element xi always equals the first symbol of the content of memory (i, 2). More
precisely, this can be done as follows. Let δ(q, b) 3 (p, s1, . . . , sk) be an original transition
of M .

If si = o or si = c, for some i, 1 ≤ i ≤ k, then instead we open memory (i, 1) or close
memory (i, 2), respectively.
If b ∈ Σ, then, for every open memory (i, 1), we nondeterministically choose to close
it and open memory (i, 2) instead and set xi = b. Then we read b from the input and
change to state p.
If b ∈ {1, 2, . . . , k}, then we first recall memory (b, 1) and then, for every open memory
(i, 1), we nondeterministically choose to close it and open memory (i, 2) instead and set
xi = xb. Then, we recall memory (b, 2) and change to state p.

All these modifications can be done by introducing intermediate states and using ε-transitions
and the accepted language of M does not change.

The automaton M now stores some content u of an original memory i factorised into two
factors u1 and u2 in the memories (i, 1) and (i, 2), respectively. For the sake of convenience,
we simply say that u is stored in (i, 1) · (i, 2) in order to describe this situation. Next, we
show that if u is stored in (i, 1) · (i, 2), then any way of how u is factorised into the content
of (i, 1) and (i, 2) is possible. More precisely, we show that, for every w, u, u1, u2 ∈ Σ∗ with
u1u2 = u, M can reach state p by consuming w with u stored in (i, 1) · (i, 2) if and only if M
can reach state p by consuming w with u1 and u2 stored in (i, 1) and (i, 2), respectively .

The if part of this statement is trivial. We now assume that M can reach state p by
consuming w with u stored in (i, 1) · (i, 2). This implies that we reach the situation that
(i, 1) is open, currently stores u′1 and the next consuming transition consumes u′′1u′2, where
u1 = u′1u

′′
1 and u2 = u′2u

′′
2 with u′2 6= ε. If u′′1 = ε, then M can choose to close (i, 1) and then

open (i, 2), which results in u1 and u2 being stored in (i, 1) and (i, 2), respectively. If, on the
other hand, u′′1 6= ε, then the next transition recalls memories (j, 1) and (j, 2) such that u′′1u′2
is stored in (j, 1) · (j, 2). If u′′1 and u′2 are stored in (j, 1) and (j, 2), respectively, then M first
recalls (j, 1), chooses to close (i, 1) and open (i, 2), and then recalls (j, 2), which results in
u1 and u2 being stored in (i, 1) and (i, 2). Consequently, we have to repeat this argument
for memories (j, 1) and (j, 2), i. e., we have to show that it is possible that u′′1u′2 is stored in
(j, 1) · (j, 2) in such a way that u′′1 is stored in (j, 1) and u′2 is stored in (j, 2). Repeating this
argument, we will eventually arrive at a memory that is not filled by any memory recalls;
thus, we necessarily have the case u′′1 = ε.
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Now, we turn M into a TMFArej M ′, i. e., the state [trap] becomes non-accepting, and,
in addition, we add a new new accepting state qt (simulating the old accepting [trap]) with
δ(qt, x) = {(qt, �, . . . , �)}, x ∈ Σ, and have all transitions of the former M that lead to [trap]
(note that these are not memory recall failure transitions) now leading to qt. Furthermore, we
change this M ′ such that for every memory recall, there is also the nondeterministic choice
to only recall (i, 1), then check whether xi does not equal the next symbol on the input and,
if this is the case, enter state qt. Obviously, this simulates the memory recall failure of M .

Every word accepted by M without memory recall failures can be accepted by M ′ in
the same way, every word accepted by M due to a recall failure can be accepted by M ′ by
guessing and simulating this memory recall failure. On the other hand, if M ′ accepts a word
with a simulated memory recall failure, then M will accept this word by a proper memory
recall failure, and if M ′ accepts a word without a simulated memory recall failure, then,
since M ′ ∈ TMFArej, there is no memory recall failure in the computation and M can accept
the word by the same computation.

This completes the proof of L(TMFAacc) ⊆ L(TMFArej).
We shall conclude this proof by briefly sketching why L(TMFArej) = L(RX) holds. For

an α ∈ RX, it is straightforward to obtain an equivalent TMFArej: Transform α into a
proper regular expression αR with L(αR) = R(α) (by just renaming variable bindings and
references), then transform αR into an equivalent NFA M , and finally interpret M as a
TMFArej by interpreting transition labels [x, ]x as memory instructions and transition labels
x as memory recalls. The other direction relies on first resolving overlaps of memories (i. e.,
the case that two memories store factors that overlap in the input word, see also Example 34)
and then transforming the TMFArej M into a proper regular expression for a ref-language
that dereferences to L(M), which can then directly be interpreted as a regex (due to the
non-overlapping property of memories, which translates into a well-formed nesting of the
parentheses [x, ]x). The details here are a bit more technical and we refer to [45] for further
reading. J

A.4 Proof of Theorem 6
We first extend the notion of completeness from DFA to DTMFA, by saying that a DTMFA is
complete if, for every q ∈ Q, either δ(q, x) is defined, for every x ∈ Σ, or δ(q, i) is defined, for
some i, 1 ≤ i ≤ k, or δ(q, ε) is defined. This means that a complete DTMFA has, for every
state, either exactly |Σ| transitions (which are all consuming transitions, but not memory
recall transitions), exactly one memory recall transition, or exactly one ε-transition.

For deterministic automata, it is usually possible to apply the state complementation
technique (i. e., toggling acceptance of states) in order to show closure under complement.
However, we also need completeness and ε-freeness, since otherwise it may happen that a
word is not accepted because its computation gets stuck or enters an infinite ε-loop and
therefore is not entirely processed, which leads to a word which is accepted neither by the
original nor by the complement automaton. The requirement of completeness and ε-freeness
is not a restriction for DTMFA, since these properties can be achieved by classical techniques.
However, recalling empty memories, which are special cases of ε-transition, can cause the
same problems and therefore we have to get rid of them as well. This can be done by storing
in the finite-state control whether the memories are currently empty or non-empty and then
treating recalls of empty memories as ε-transitions and remove them along with the other
ε-transition in the classical way.

We need a few more definitions: Let Γ = {o, c, r, �} and let } be a binary operator on Γ
defined by x} y = y, if y 6= � and x} y = x, if y = �. Furthermore, we extend } to Γk by
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(x1, . . . , xk) } (y1, . . . , yk) = (x1 } y1, . . . , xk } yk). We note that } is associative and some
memory instructions s1, s2, . . . , sn ∈ Γ applied to some memory in this order have the same
result as the memory instruction s1 } s2 } . . .} sn.

Next, we prove a sequence of propositions:

I Proposition 36. Let M ∈ DTMFA. For every w ∈ Σ∗ and every configuration c for M ,
there exists at most one configuration c′ with c `M c′.

Proof. Let c = (q, v, (u1, r1), . . . , (uk, rk)). If no δ(q, i), 1 ≤ i ≤ k, is defined, then there
is obviously at most one c′ with c `m c′. If δ(q, i) = (p, s1, . . . , sk), for some i, 1 ≤ i ≤ k,
then either v = uiv

′, which implies that c `M (p, v′, (u′1, r′1), . . . , (u′k, r′k)), where the (u′j , r′j),
1 ≤ j ≤ k, are uniquely determined by ui and the sj , 1 ≤ j ≤ k, or ui is not a prefix of
v, which implies that c `M ([trap], v′′, (u1, r1), . . . , (uk, rk)), where v = v′v′′ and v′ is the
largest common prefix of v and ui. In both cases, there is at most one configuration c′ with
c `M c′. J

I Proposition 37. For every M ∈ DTMFA there exists an ε-free M ′ ∈ DTMFA with L(M) =
L(M ′).

Proof. Let M = (Q,Σ, δ, q0, F ). For every p ∈ Q, if, for some q ∈ Q, δ(p, ε) = (q, s1, . . . , sk),
then we define Sε,1(p) = q andM(p, q) = (s1, . . . , sk). For every p ∈ Q and every i, 2 ≤ i ≤
|Q| − 1, we define Sε,i(p) = Sε,1(Sε,i−1(p)) and, if Sε,i(p) is defined, we define (or redefine)
M(p,Sε,i(p)) =M(p,Sε,i−1(p)) } (s1, . . . , sk), where δ(Sε,i−1(p), ε) = (Sε,i(p), s1, . . . , sk).

For every p ∈ Q with δ(p, ε) defined, we now remove the ε-transitions as follows. Let
i, 1 ≤ i ≤ |Q| − 1, be such that Sε,i(p) = q and Sε,i+1(p) is undefined. Furthermore, let
δ(q, xj) = (tj , sj,1, . . . , sj,k), 1 ≤ j ≤ `, for some ` with 0 ≤ ` ≤ |Σ|, be all the transitions
from q (note that ` = 1 and x1 ∈ {1, 2, . . . , k} covers the case of a single memory recall
transition and, furthermore, an ε-transition is not possible). We now add new transitions
δ(p, xj) = (tj , s′1 } sj,1, . . . , s

′
k } sj,k), whereM(p, q) = (s′1, . . . , s′k). Then, we simply delete

all ε-transitions (note that this may produce states that are not reachable anymore, which
are deleted as well). It can be easily verified that this results in an M ′ ∈ DTMFA with
L(M) = L(M ′). J

I Proposition 38. For every M ∈ DTMFA there exists a complete M ′ ∈ DTMFA with
L(M) = L(M ′).

Proof. Let M = (Q,Σ, δ, q0, F ). We transform M into M ′ by adding a new non-accepting
state t with δ(t, x) = (t, �, . . . , �), for every x ∈ Σ, and we add transitions for every state
q ∈ Q as follows. If δ(q, i) is undefined, for every i, 1 ≤ i ≤ k, and δ(q, ε) is undefined,
then, for every x ∈ Σ with δ(q, x) undefined, we set δ(q, x) = (t, �, . . . , �). On the other
hand, if δ(q, i) is defined, for some i, 1 ≤ i ≤ k, or δ(q, ε) is defined, then we do not add any
transition. By definition, M ′ is complete and, since t is non-accepting, L(M) = L(M ′). J

I Remark. We note that the construction of the proof of Proposition 37 preserves completeness,
i. e., if M is a complete DTMFA, then we obtain an equivalent complete DTMFA without
ε-transitions. Moreover, the construction of the proof of Proposition 38 does not introduce
ε-transitions; thus, it turns an ε-free DTMFA into an equivalent complete DTMFA that is
still ε-free.

We are now ready to give the proof of Theorem 6.
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Proof. Let M = (Q,Σ, δ, q0, F ) ∈ DTMFA. By Proposition 38, we can assume that M is
complete. Due to Proposition 36, for any input w, there is a unique computation of M on w.
Hence, the idea is now to toggle the acceptance of all the states of M in order to obtain a
DTMFA that accepts L(M). However, this only works if M is ε-free, since otherwise it is
possible that some word w ∈ Σ∗ cannot be fully consumed by M (for example, if it leads into
a loop in which all transitions are ε-transitions and no state is accepting); thus, w is neither
accepted by M nor by the DTMFA obtained by toggling the acceptance of states. While we
can remove ε-transitions due to Proposition 37, we encounter the problem that a memory
recall transition with respect to an empty memory behaves just like an ε-transition and, thus,
can cause the same problems. Hence, we first have to transform such memory recall transition
into ordinary ε-transitions, which can then be removed according to Proposition 37.

To this end, we modify M such that the finite state control stores, for every i, 1 ≤ i ≤ k,
whether or not memory i is open and whether or not memory i stores the empty word. More
precisely, we obtain anM1 ∈ DTMFA by modifyingM as follows. Every state q is replaced by
22k new states [q, (r1, c1), . . . , (rk, ck)], where ri ∈ {C, O}, ci ∈ {ε, ε}, 1 ≤ i ≤ k, and we change
the transitions such that if M1 reaches a configuration with state [q, (r1, c1), . . . , (rk, ck)],
then, in the current configuration, for every i, 1 ≤ i ≤ k, ri is the status of memory i and
memory i is empty if and only if ci = ε. For example, if M1 is in state [p, (r1, c1), . . . , (rk, ck)]
with (ri, ci) = (C, ε) and δ(p, x) = (q, s1, . . . , sk) with x ∈ Σ and si = o, then, if x is the next
symbol of the input, M1 changes to a state [q, (r′1, c′1), . . . , (r′k, c′k)] with (r′i, c′i) = (O, ε). We
note that M1 is still complete and deterministic.

Next, we change M1 into M2 by replacing, for every i, 1 ≤ i ≤ k, every transition of
the form δ([p, (r1, c1), . . . , (rk, ck)], i) = ([q, (r′1, c′1), . . . , (r′k, c′k)], s1, . . . , sk) with ci = ε by an
ε-transition δ([p, (r1, c1), . . . , (rk, ck)], ε) = ([q, (r′1, c′1), . . . , (r′k, c′k)], s1, . . . , sk). We note that
L(M1) = L(M2) and, since M1 is deterministic, this only introduces ε-transitions, such that
if δ(p, ε) is defined then, for every y ∈ (Σ ∪ {1, 2, . . . , k}), δ(q, y) is undefined. Consequently,
M2 is still deterministic and it never happens that an empty memory is recalled. Next, by
Proposition 37, we can transform M2 into a complete M3 ∈ DTMFA without ε-transitions
(see Remark A.4) that still has the property that no empty memories are recalled.

Let M ∈ DTMFA be obtained from M3 by toggling the acceptance of the states, i. e., if
Q3 and F3 are the sets of states and accepting states, respectively, of M3, then M is obtained
from M3 by replacing F3 by Q3 \ F3. Obviously, for every w ∈ Σ∗, both M3 and M , on
input w, reach the same state and completely consume the input. This directly implies
L(M) = L(M3). J

A.5 Proof of Theorem 5
Proof. We first modify M with respect to its ε-transitions as follows. Let p ∈ Q be a state
with an ε-transition that is followed by another ε-transition. If p is contained in a cycle
q1, q2, . . . , qn of ε-transitions, we simply replace this cycle by a single state q′ (i. e., all incoming
edges of any qi, 1 ≤ i ≤ n, then point to q′) that is accepting if and only if some qi, 1 ≤ i ≤ n,
is (note that, since M is deterministic, no qi has any other transition). Otherwise, there are
states q1, q2, . . . , qn, p = q1, with transitions δ(qi, ε) = (qi+1, si,1, . . . , si,k), 1 ≤ i ≤ n−1, such
that qn has no ε-transition. We can now remove the transition δ(q1, ε) = (q2, s1,1, . . . , s1,k)
and add a transition δ(q1, ε) = (qn, t1, . . . , tk), where, for every j, 1 ≤ j ≤ k, tj is a memory
instruction that has the same effect as applying instructions s1,j , s2,j , . . . , sn−1,j in this order.
Moreover, if, for some i, 2 ≤ i ≤ n− 1, qi ∈ F , then we define q1 as accepting. By applying
this modification for every ε-transition that is followed by another ε-transition, we can
modify M such that no ε-transition is followed by another ε-transition. Hence, since M is
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deterministic, there are at most |Q| ε-transitions and for each, we have to determine the
states q1, q2, . . . , qn and perform the modifications described above, which can be done in
time O(|Q|), as well. Consequently, the whole procedure can be carried out in O(|Q|2).

Next, we consider states with a memory recall transition. Similar as for states with
ε-transition, such states are followed by a (possibly empty) sequence of consecutive memory
recall or ε-transitions that either ends in a state with neither memory recall nor ε-transition or
eventually forms a loop. We first consider the case, where this sequence does not contain any
ε-transitions and does not form a loop. Let q1 be the state with memory recall transition and
let (q1, `1), (q2, `2), . . . , (qn, `n), qn+1 be the sequence of the following states with consecutive
memory recall transitions along with the memory that is recalled. More precisely, the
transition from qi to qi+1, 1 ≤ i ≤ n, recalls `i and the last element qn+1 is the first state
without memory recall transition (and, by assumption, also without ε-transition). We now
contract this list by the following algorithm. Initially, let A = ∅. Then we move through
the list from left to right and for every element (qi, `i) (except for qn+1), we proceed as
follows. If `i ∈ A, then we remove (qi, `i) and if `i /∈ A, then we keep (qi, `i) and add `i
to A. Obviously, this results in a list (p1, r1), . . . , (pn′ , rn′), qn+1 with n′ ≤ k. The idea is
that if we move from left to right through this new list, it tells us which state to enter if the
memory of the current memory recall is empty, i. e., if memory r1 is non-empty, we recall it
in state p1, if memory r1 is empty, we can directly jump to state p2 and either recall r2, if it
is non-empty, or jump to p3 otherwise, and so on. If all memories (that occur somewhere in
the list) are empty, we end up in state qn+1.

In the presence of ε-transitions, we simply ignore these and always only consider the next
transition that recalls a memory, i. e., it is possible that for elements (qi, `i) and (qi+1, `i+1)
of the non-contracted list, there is an intermediate state p with recall transition from qi to p
and ε-transitions from p to qi+1 (note that due to the construction from above, there are no
consecutive ε-transitions), but the contraction works in the same way. Moreover, if (qi, `i)
and (qj , `j) (or qn+1, the last element) with i < j are consecutive elements of the contracted
list (i. e., all elements (qr, `r), i+ 1 ≤ r ≤ j − 1, have been deleted by the algorithm), then
we replace (qi, `i) by (qacc

i , `i) (where the marker acc means that we can accept), if for some
r, i+ 1 ≤ r ≤ j, (qr, `r) ∈ F . Note that this is analogous to the modification from above,
where we define states as accepting, if they are connected to an accepting state by a sequence
of ε-transitions, but here we cannot change acceptance of the actual states, since it depends
on the current contents of memories, whether we can reach an accepting state by only recalls
of empty memories or ε-transitions.

If the sequence of memory recall transitions enters a loop, we construct the list only up
to the first time a state is repeated, say p, and have (p, loop) as the last element of the list.
Then we apply the contraction in the same way as before, where (p, loop) plays the role of
qn+1. Similarly as before, we mark elements (qi, `i) as accepting if a pair was removed that
contained an accepting state.

In addition to the states, we also store in the list the memory instructions that have to
be applied in order to jump to the next state (this can be done similiar as for contracting the
ε-transitions above). We construct such a list for every state with a memory recall transition.
Every single list can be constructed in time O(|Q|), so we need time O(|Q|2) in total.

Now we check whether or not w ∈ L(M) by running (the modified) M on input w in
a special way. We first initialise a list (1, C, ε), (2, C, ε), . . . , (k, C, ε) indicating that every
memory is closed and empty. Then we simulate M on input w as follows. Every transition
that consumes a single symbol as well as every ε-transition is just carried out. Whenever
a memory status is changed, we store this in the list and we also store whether a memory
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is currently empty or not (note that we have to know the current statuses in order to do
this). When a memory is recalled in state q, then we move through the list stored for state q
until we find a recall of a memory that is currently non-empty, jump in the automaton to
the corresponding state and apply the memory instructions. Whenever we reach an element
(qacc
i , `i) in the list, then we check whether the input has been fully consumed and if yes, we

conclude w ∈ L(M). If we reach in a list an element (p, loop), then we conclude w ∈ L(M),
if p ∈ F and w /∈ L(M) otherwise. If in the computation the input has been completely
consumed, then we conclude w ∈ L(M) if and only if M is in an accepting state.

Since there are no consecutive ε-transitions, every consumption of a single symbol from
the input by a transition is done in constant time. Every consumption by a memory recall
transition requires time O(k), since we have to move through a list of size O(k). Consequently,
the total running time is O(|Q|2 + k|w|). J

A.6 Proof of Lemma 7

Proof. As L ∈ L(DTMFArej), there exists an M ∈ DTMFArej with L(M) = L. If there is an
m ≥ 0 such that in every accepting run of M , each variable stores only a word of length at
most m, then L is regular (as we can rewrite M into a DFA that stores the contents of the
variables in its states). Likewise, if variables can store words of unbounded length, but are
then never recalled, these variables can be eliminated, which also allows us to turn M into a
DFA for L.

Hence, if L is not regular, M has at least one variable x such that for every m ≥ 0, there
is an accepting run of M on a word w during which x stores a word of length n ≥ m, and
this variable is recalled with this content. Let pn be the part of the accepting run that M
has processed up to a state q where it recalls x at a point where this variable contains a word
of length n. Let vn be this content of x (hence, |vn| = n). As vn must have been consumed
while processing pn, |pn| ≥ n holds, and vn must be a factor of pn.

If M succeeds at recalling x at this point (i. e., it consumes vn), it can continue to accept
w, which means that pnvn is a prefix of w ∈ L. On the other hand, for each u ∈ Σ+ such
that vn is not a prefix of u, M encounters a memory recall failure and rejects. As M is
deterministic, the recall transition for x must be the only transition that leaves the state q.
Hence, pnu /∈ L for u that do not have vn as prefix. J

A.7 Proof of Lemma 10

Proof. We show that 1 implies 2, which implies 3, which implies 1. The first two of these steps
are simple: Assume that L is regular. Every regular language over a single letter alphabet
can be expressed as a finite union of arithmetic progressions (cf., e. g., Chrobak [13, 14]). As
L is infinite, it must contain an infinite arithmetic progression. But if L contains an infinite
arithmetic progression aib+c, then the third condition is satisfied by definition.

The step from 3 to 1 is more involved. Before we prove this, note that there are unary
languages (which are not DTMFA-languages), for which condition 3 does not imply the
existence of an infinite arithmetic progression, see Example 39 below.

Assume that L ⊆ {a}∗ is infinite, L ∈ L(DTMFArej), and condition 3 is met is for some
b ≥ 1. By definition, there is an M ∈ DTMFArej with L(M) = L. As M is deterministic,
each of its states can have at most one outgoing transition; and as L is infinite, each state
must have exactly one outgoing transition. Hence, like a DFA for a unary language (see
e. g. the proof of Theorem 25), M consists of a chain and a cycle. Let m be the number of
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accepting states on the cycle, and let k be the number of variables that are accessed in the
cycle (by recalling them, or by performing memory instructions).

Now consider an n > m(b+ 1)k such that there exists a cn with wi : = abi+cn ∈ L for all
0 ≤ i ≤ n, and reading w0 = ab+cn takes M into the cycle (as condition 3 holds for all n,
such a cn exists for every n that is sufficiently large). Let q be the accepting state that is
reached by w0.

In the following, by an iteration of the cycle, we mean the situation that M is in state
q and then consumes input symbols until it reaches q for the next time. The iteration of
the cycle that starts after having fully consumed w0 is called iteration 1. Now, for every
j ≥ 1, we define a function ~vj : {1, . . . , k} → N that describes the content of each memory
after completing iteration j.

In the remainder of the proof, we show that there is a constant upper bound for the values
~vj(x), 1 ≤ x ≤ k, j ≥ 1. Note that if the length of the content of each memory is bounded,
then M can be rewritten into an equivalent DFA that simulates all memories in its states.
Hence, L must be a regular language, which shows that condition 3 implies condition 1.

As M has to accept all words wi with 0 ≤ i ≤ n, and as each iteration of the cycle can
accept only m words, we know that M has to perform at least I : = n

m > (b+ 1)k iterations
of the cycle in order to accept wn. During these iterations, M cannot consume more than
ab between each pair of accepting states – otherwise, M would skip at least one of the
wi (as M is deterministic, the run for wn must be an extension of each run for a wi with
i < n). In particular, this means that each memory that is recalled during these iterations
cannot contain more than ab; thus, there are only b+ 1 possible contents for each memory.
Furthermore, as M is deterministic, we know that each memory that is not recalled during
these iterations will not be recalled during any later iterations of the cycle, which means
that it can be removed from the cycle (and, as the chain is of finite length, it can also be
removed from the chain). Hence, without loss of generality, we can assume that ~vj(x) ≤ b,
1 ≤ x ≤ k′, 1 ≤ j ≤ I, where the cycle contains exactly the memories 1, . . . , k.

As I > (b+ 1)k and as there are only (b+ 1)k possible choices of ~vj , there exist j, j′ with
0 ≤ j′ < j′ ≤ I and ~vj = ~vj′ . As M is deterministic, this allows us to conclude ~vj+l = ~vj′+l
for all l ≥ 0. In other words, the sequence of transitions from iteration j to iteration j′ will
be repeated forever, using exactly the same memory contents, which means that ~vl(x) ≤ b
for all l ≥ 0 and all 1 ≤ x ≤ k. As explained above, this concludes the proof. J

I Example 39. We define a Lex ⊂ {a}∗ together with its complement Lex in the following
way: First, add a to Lex, then add the two words a2 and a3 to Lex, and the three words a4

to a6 to Lex, and so on. In other words, in each step i, we add the next i words of {a}∗
to one of the languages; namely Lex if i is odd, and Lex if i is even. Then Lex satisfies
condition 3 of Lemma 10, but it does not contain any infinite arithmetic progression. Hence,
Lex /∈ L(DTMFArej); and Lex /∈ L(DTMFArej) follows analogously.

A.8 Proof of Proposition 12

Proof. We first observe that L(REG) ⊆ L(DTMFArej) ∩ L(DTMFAacc) holds by definition.
Next, we assume that there is a non-regular L ∈ (L(DTMFArej) ∩ L(DTMFAacc)) over
{a}∗. In particular, this implies that both L and its complement L : ={a}∗ \ L are infinite
and, furthermore, by Theorem 6, L ∈ L(DTMFAacc) implies L ∈ L(DTMFArej). Since
L ∈ L(DTMFArej) is a non-regular DTMFArej language, Lemma 7 allows us to conclude that
for every m ≥ 0, there exist an n ≥ m and a pn ≥ n such that ai /∈ L for all pn ≤ i < pn + n.
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Hence, L contains finite arithmetic progressions of unbounded length; and as L is infinite,
Lemma 10 states that L is regular, which is a contradiction. J

A.9 Proof of Theorem 17
Proof. We construct M(α) by first constructing a graph Gα̃ from the marked regex α̃.
As Gα̃ is a generalization of the occurrence graphs for proper regular expressions, we call
this the memory occurrence graph. Analogously to proper regular expressions, this graph
can be directly interpreted as anM(α) ∈ TMFArej that is deterministic if and only if α is
deterministic.

Memory occurrence graph Gα̃: Given a marked regex α̃, we define a memory occurrence
graph Gα̃ : =(Vα̃, Eα̃) with a source node src, a sink node snk, and one node for each marked
variable reference or terminal. The labeled edges are of the form (u, ν, v), where u, v ∈ Vα̃,
and each label ν is a marked ref-word ν ∈ Γ̃∗. We use marked ref-words instead of unmarked
ref-words to fulfill the promise thatM(α) is deterministic if and only if α is deterministic. If
α has n occurrences of variable references and terminals,M(α) has n+ 2 states: the initial
state, the state [trap] for memory recall failures, and one state for each of the n occurrences
in α.

If we only want to construct an algorithm that turns a deterministic regex into a DTMFArej

and rejects non-deterministic regexes, we can use unmarked edge labels instead (see the
section at the end of this proof).

When interpreting Gα̃ as a TMFA M(α), we first remove the markings from the edge
labels, and interpret these as memory actions of a TMFA, e. g., [x corresponds to opening
the memory for x. In order to simplify the construction, we take into account that different
ref-words over Γ can have the same net effect on variables, and can be represented by the
same single transition in a TMFA. For example, ]x[x]x[x and ]x[x and [x all have the same
effect as performing o on the memory for x. Following this intuition, given a ref-word
ν ∈ Γ∗, we define the net variable action of ν as a function netν : Ξ→ {o, c, r, �}, where for
each x ∈ Ξ, netν(x) : = � if no element of Γx : ={[x, ]x} occurs in ν, and netν(x) : = o if the
rightmost occurrence of an element of Γx is a [x. Furthermore, if the rightmost occurrence of
an element of Γx is ]x, we define netν(x) : = r if ν contains [x, and netν(x) : = c otherwise. In
the construction further down, we also consider concatenations of labels. We observe the
following for all ν, ν1, ν2 ∈ Γ∗ and all x ∈ Ξ: If netν(x) = �, then netν1·ν(x) = netν1(x) and
netν·ν2 = netν2(x). If netν2(x) ∈ {o, r}, then netν1·ν2(x) = netν2(x).

We also use the following notion of minimal representations: For all ν ∈ Γ∗ and x ∈ Ξ,
we define minx(ν) ∈ Γ∗ by minx(ν) : = [x if netν(x) = o, minx(ν) : = ]x if netν(x) = c,
minx(ν) : = [x]x if netν(x) = r, and minx(ν) : = ε if netν(x) = �. For any ν ∈ Γ∗, its minimal
representation min(ν) is defined as any concatenation of all minx(ν) for all x ∈ Ξ (as netν 6= �
holds only for finitely many x ∈ Ξ, this is not problematic). In other words, for each ν ∈ Γ∗,
min(ν) is one of the shortest words in Γ∗ that satisfies netmin(ν) = netν .

By using net, we can directly interpret a memory occurrence graph Gα̃ as a TMFA
M(α) : =(Q,Σ, δ, src, F ), analogously to the occurrence graph for proper regular expressions.
The components ofM(α) are obtained as follows: First, we rename the variables such that
Gα̃ contains exactly the variables {1, . . . , k} for some k ≥ 0 (hence, for each 1 ≤ i ≤ k, there
is a variable xi ∈ var(α) such that xi is represented by 1). We then define

Q : =(Vα̃ \ {snk}) ∪ {[trap]},
F : ={u ∈ Q | (u, ν, snk) ∈ Eα̃ for some ν}.
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In other words, all nodes except snk are states, and all nodes that have an edge to snk are final
states (as in the occurrence graph). Following this intuition, each edge (u, ν, v) with v 6= snk
corresponds to a transition from state u to state v, while performing the memory actions
of netν(x) on each x ∈ var(α). In order to allow recursive applications of the construction,
each edge (u, ν, snk) not only marks that u is an accepting state, but also that the memory
actions of ν need to be performed before accepting. Formally, we define δ to include exactly
the following transitions:

1. If (u, ν, a(i)) ∈ Eα̃ with a ∈ Σ, then (a(i), s1, . . . , sk) ∈ δ(u, a).
2. If (u, ν, x(i)) ∈ Eα̃ with x ∈ var(α), then (x(i), s1, . . . , sk) ∈ δ(u, x),
where for each 1 ≤ i ≤ k, si : = netunmark(ν)(xi) (unless the transition recalls memory i; then
we choose si : = c as required by Definition 3). Recall that unmark : (Σ̃∪ Ξ̃∪ Γ̃)→ (Σ∪Ξ∪Γ)∗
is the morphism that removes the markings from marked letters. As we shall see, in order
to satisfy the condition thatM(α) is deterministic only if α is deterministic, we need to
slightly adapt this definition.

Following this interpretation, we say that a memory occurrence graph Gα̃ is not deter-
ministic if there exists a u ∈ Vα̃ such that any of the following conditions is met:

1. Eα̃ contains edges (u, ν1, a(i)) and (u, ν2, a(j)) with i 6= j and a ∈ Σ.
2. Eα̃ contains edges (u, ν1, x(i)) and (u, ν2, χ(j)) with i 6= j, x ∈ Ξ, χ ∈ (Ξ ∪ Σ),
3. Eα̃ contains edges (u, ν1, χ(i)) and (u, ν2, χ(i)) with ν1 6= ν2 and χ ∈ (Ξ ∪ Σ),
4. Eα̃ contains edges (u, ν1, snk) and (u, ν2, snk) with ν1 6= ν2.
Otherwise, we call Gα̃ deterministic. It is easily seen that if Gα̃ is deterministic,M(α) is
also deterministic. For the other direction, we need to account for two problems: First, it is
possible that two labeled ref-words ν1 and ν2 map to the same memory action netunmark(ν1) =
netunmark(ν2), e. g., ν1 = [x1]x(2) and ν2 = [x3]x(4)[x5]x(6), which can occur in regex like
α1 : =

(
〈x : ε〉 ∨(〈x : ε〉〈x : ε〉)

)
a. Second, as M(α) has no ε-transitions, it does not model

the difference between distinct edges to snk, as they appear when converting regex like
α2 : =(ε∨〈x : ε〉). As DTMFA cannot detect explicitly that the end of the input has been
reached, they cannot simulate the memory actions of edges to snk, which means that the
construction ignores this.

In both cases, the accepted language is correct; but this has the side effect the result-
ing M(α) is deterministic, although α and Gα̃ are not. Hence, to ensure that M(α) is
deterministic only if α is deterministic, we proceed as follows: If Gα̃ contains any of these
edges, we pick any transition δ(q, b) 3 (p, s1, . . . , sk) with b ∈ Σ ∪ {1, 2, . . . , k}. We then add
a new state pndet, a transition δ(q, b) 3 (pndet, s1, . . . , sk), and pndet has the same outgoing
transitions as p. If we want to construct an algorithm that rejects non-deterministic regex,
we can simply omit this technical crutch, and detect these cases in the construction of Gα̃ as
discussed below.

Constructing Gα̃: We now define Gα̃ = (Vα̃, Eα̃) recursively.

1. Empty word: If α̃ = ε, we define

Vα̃ : ={src, snk},
Eα̃ : ={(src, ε, snk)}.

This case is completely straightforward: An edge from src to snk is how occurrence graphs
model ε, and the marking ε means that this transition performs no memory actions.
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2. Terminals and variable references: If α̃ = χ(i) with χ ∈ (Σ ∪ Ξ), we define

Vα̃ : ={src, χ(i), snk},
Eα̃ : ={(src, ε, χ(i)), (χ(i), ε, snk)}.

Similar to the case for ε, this models that the terminal is read, or that a variable reference
is processed, by recalling the appropriate memory.

3. Variable bindings: If α̃ = ([x(i)β̃]x(j)) with x ∈ Ξ, we define Vα̃ : =Vβ̃ and

Eα̃ : = {(src, [x(i) · νin, v) | (src, νin, v) ∈ Eβ̃ , v 6= snk}

∪ {(u, ν, v) | (u, ν, v) ∈ Eβ̃ , u 6= src, v 6= snk}

∪ {(u, νout · ]x(j), snk) | (u, νout, snk) ∈ Eβ̃ , u 6= src}

∪ {(src, [x(i) · νε · ]x(j), snk) | (src, νε, snk) ∈ Eβ̃},

Less formally, we take the memory occurrence graph for β and add opening (and closing)
of x to all edges from src (and to snk, respectively); while all other edges remain unchanged.
Note that for edges from src to snk, we could also use νε · [x]x or [x]x ·νε, as by Definition 1,
〈x : β〉 is only a regex if x /∈ var(β), which implies that no marked [x or ]x occurs in νε.

4. Disjunction: If α̃ = (β̃ ∨ γ̃), we define Vα̃ : =Vβ̃ ∪ Vγ̃ and Eα̃ : =Eβ̃ ∪ Eγ̃ .
As the markings define a one to one correspondence between the nodes in Vα̃ and the
terminals and the variable references in α, we know that Vβ̃ ∩ Vγ̃ = {src, snk}. Therefore,
the resulting memory occurrence graph Gα̃ computes the union of Gβ̃ and Gγ̃ .

5. Concatenation: If α̃ = (β̃ · γ̃), we define

Vα̃ : =Vβ̃ ∪ Vγ̃ ,

Eα̃ : ={(u, ν, v) | (u, ν, v) ∈ Eβ̃ , v 6= snk}

∪ {(u, ν, v) | (u, ν, v) ∈ Eγ̃ , u 6= src}
∪ {(u, (ν1 · ν2), v) | (u, ν1, snk) ∈ Eβ̃ , (src, ν2, v) ∈ Eγ̃},

Again, we use the fact that Vβ̃ ∩ Vγ̃ = {src, snk}. The memory occurrence graph Gα̃
first simulates Gβ̃ , until the latter would accept by processing an edge (u, ν1, snk) ∈ Eβ̃ .
Instead of following this edge to snk, Gα̃ then starts its simulation of Gγ̃ , by picking any
edge (src, ν2, v) ∈ Eγ̃ , which is merged with (u, ν1, snk) into a single edge from u to v,
and its label is (ν1 · ν2). Hence, it is easy to see that Gα̃ computes the concatenation of
Gβ̃ and Gγ̃ .

6. Kleene plus: Assume α̃ = β̃+. This case requires some additional definitions. Let Nε
denote the set of all ν with (src, ν, snk) ∈ Eβ̃ , and let N (∗) : ={min(ν) | ν ∈ N∗ε }, where
we assume that the elements of N (∗) have some arbitrary markings (as we shall see, this
definition matters only for non-deterministic regex, which means that we do not need
markings to detect non-determinism).
Note that, as Nε is finite, there are only finitely many x ∈ Ξ such that netν(x) 6= � for
a ν ∈ Nε, which implies that N (∗) is finite. In order to avoid hiding non-determinism
in some very special cases, we assume that N (∗) always contains at least two elements
(this is possible without loss of generality, as we can always add some ν2 for a ν ∈ N (∗)

without changing the behavior). We now define Vα̃ : =Vβ̃ , as well as

Eα̃ : =Eβ̃ ∪ {(src, ν̂ · νin, v) | (src, νin, v) ∈ Eβ̃ , ν̂ ∈ N
(∗)}

∪ {(u, νout · ν̂, snk) | (u, νout, snk) ∈ Eβ̃ , ν̂ ∈ N
(∗)}

∪ {(u, νout · ν̂ · νin, v) | (u, νout, snk) ∈ Eβ̃ , (src, νin, v) ∈ Eβ̃ , ν̂ ∈ N
(∗)}.
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Similar to the construction for concatenation, the idea is that Gα̃ simulates Gβ̃ ; and
whenever the latter could accept by taking an edge to snk, the former can loop back to
the beginning. The only difficult part is when Gβ̃ contains edges from src to snk with
memory actions. As the Kleene plus allows us to use an arbitrary amount of these edges
before taking an edge from src or to snk, we need to include N∗ε in the functions. This
set is generally infinite; but it can be compacted to the finite set N (∗).
For deterministic regex, this construction collapses to a far simpler case that does not
use N (∗): First, note that if α is deterministic and contains β+, (src, ν, snk) ∈ Eβ̃ implies
ν = ε, as otherwise, β would satisfy condition 4 of Definition 14, and α would satisfy
condition 3 or 4. Hence, if α is deterministic, we can assume that or Nε = {ε} or Nε = ∅;
both cases lead to N (∗) = {ε}. This allows us to use the following simplified definition:

Eα̃ : =Eβ̃ ∪ {(u, νout · νin, v) | (u, νout, snk) ∈ Eβ̃ , (src, νin, v) ∈ Eβ̃}.

Hence, when constructing Gα̃ inductively, we first check if Eβ̃ contains an edge (u, ν, v)
with ν 6= ε. If this is the case, we can reject α as not deterministic. Otherwise, we use
this simplified definition.

Correctness and determinism: The correctness of the construction is easily seen by a
lengthy but straightforward induction, using the explanations provided with the definitions
above. In particular, note that if α does not contain a Kleene plus (or contains a Kleene
plus and is deterministic), each path from src to snk through Gα̃ corresponds to a marked
ref-word from R(α), and vice versa. If α is not deterministic and contains a Kleene plus, the
correspondence is a little bit less strict, as ref-words γ ∈ Γ+ are compressed to the equivalent
min(γ).

To see thatM(α) is deterministic if and only if α is deterministic, recall that we established
above thatM(α) is deterministic if and only if Gα̃ is deterministic. Hence, it suffices to show
that if determinism in Gα̃ is equivalent to determinism in α. But this follows immediately
from our observation that there is a one-to-one correspondence between paths in Gα̃ and the
marked ref-words in R(α), and the fact that each node χ(i) ∈ Vα̃ \ {src, snk} corresponds to
the same χ(i) in α̃. Thus, if Gα̃ satisfies a condition i for non-determinism, α satisfies the
same condition i in Definition 14, and vice versa.

Complexity: Given a regex α, let n denote the number of occurrences of terminals and
variable references in α. We examine two steps of the computation: Computing Gα̃, and
converting it toM(α).

For the first step, observe that Gα̃ has n+ 2 nodes, and if α is deterministic, each node
has at most min(n, |Σ|) outgoing edges, which means that we can bound this number with |Σ|.
Hence, if α is deterministic, Gα̃ can be computed in time O(|Σ||α|n) by directly following the
recursive definition of Gα̃: If α is represented as a tree, it has at most |α| nodes, which means
that the recursive rules have to be applied O(|α|) times. Each rule application requires the
creation of at most O(|Σ|n) edges, each of which uses a concatenation.

For the conversion, we need to process each edge (u, ν, v) ∈ Eα̃, and compute its function
netunmark(ν). From the recursive definition, we can immediately conclude that |ν| ∈ O(|α|)
(as α is deterministic, we do not even need to take into account that the definition for Kleene
plus uses min). Hence, each edge can be turned into a transition in time O(|α). As α is
deterministic, there are O(|Σ|n) edges, which gives us a total time of O(|Σ||α|n) for this step.

As we have the same approximation for both steps, we conclude that the total running
time is O(|Σ||α|n).
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If α is not deterministic, this can be discovered during the construction, as soon as
the recursive definition computes a non-deterministic memory occurrence graph Gβ̃ for a
non-deterministic subexpression β of α, or if hidden non-determinism is detected.

Unmarked edge labels: As mentioned above, if the goal is not to construct an M(α)
that is deterministic if and only if α is deterministic, but to turn every deterministic α
in a deterministicM(α) and to reject non-deterministic α, we can construct Gα̃ by using
unmarked ref-words on the labels. The only cases where using unmarked ref-words can
hide non-determinism (in the sense that Gα̃ is deterministic, although α is not) is in the
rule for union. For example, consider α : =〈x : ε〉 ∨〈x : ε〉, which satisfies condition 4 of
Definition 14, as L(α̃) contains [x(1)]x(2) and [x(3)]x(4), due to α̃ = ([x(1)]x(2))∨([x(3)]x(4)).
If we use unmarked ref-words, Gα̃ consists only of a single edge from src to snk with label
[x]x, which is clearly deterministic. Nonetheless, we can detect this hidden non-determinism
when recursively constructing Gα̃, by checking whether there exist edges (src, ν1, snk) ∈ Eβ̃
and (src, ν2, snk) ∈ Eγ̃ with ν1 6= ε or ν2 6= ε. Hence, if the conversion algorithm encounters
this case, it can reject the regex as non-deterministic.

Note that concatenation cannot hide non-determinism: For u ∈ Vβ̃ and v ∈ Vγ̃ , define
Nu : ={ν | (u, ν, snk) ∈ Eβ̃} and Nv : ={ν | (src, ν, v) ∈ Eγ̃}. Assume that at least one of the
two sets Nu and Nv contains more than one element. Then Eα̃ contains at least two edges
from u to v, which means that Gα̃ is not deterministic. Finally, Kleene star is also unaffected
by this change, as the presence of any edge (src, ν, snk) with ν 6= ε causes non-determinism
regardless of whether ν is marked or not.

Furthermore, note that an implementation of this construction can also represent each label
ν in reduced form as netmin(ν), if it ensures that no hidden non-determinism is present. J

A.10 Lemma 40 (for Example 20)
I Lemma 40. Let L : ={F4i+3 | i ≥ 0}. Then L = L(β) holds for the deterministic regex

β : = a〈x0 : b〉〈x1 : a〉
(
〈x2 : &x1&x0〉〈x3 : &x1&x0&x1〉〈x0 : &x3&x2〉〈x1 : &x3&x2&x3〉

)∗
.

Proof. First, we observe that R(β) = {ri | i ≥ 0}, where the ref-words ri are defined by

r0 : = a[x0b]x0 [x1a]x1 ,

r̂ : = [x2x1x0]x2 [x3x1x0x1]x3 [x0x3x2]x0 [x1x3x2x3]x1 ,

and ri+1 : = ri · r̂ for all i ≥ 0. We now proof by induction that, for each i ≥ 0, D(ri) = F4i+3,
and the rightmost values that are assigned to x0 and x1 are F4i and F4i+1, respectively. For
i = 0, this is obviously true: D(r0) = aba = F3, x0 is assigned b = F0, and x1 is assigned
a = F1.

Now assume that the claim holds for some i ≥ 0, and consider ri. Then we can observe
that D(ri+1) = D(ri · r̂) = D(ri) · D(s), where the ref-word s is obtained from r̂ by replacing
x0 and x1 with their respective values F4i and F4i+1. Hence,

s = [x2F4i+1 · F4i]x2 [x3F4i+1 · F4i · F4i+1]x3 [x0x3x2]x0 [x1x3x2x3]x1

= [x2F4i+2]x2 [x3F4i+3]x3 [x0x3x2]x0 [x1x3x2x3]x1 .

The second part of this equation uses that Fn+3 = Fn+2 · Fn+1 = Fn+1 · Fn · Fn+1 holds for
all n ≥ 0. We now construct a ref-word t by replacing the variables x2 and x3 in s with their
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respective values. Hence,

t = [x2F4i+2]x2 [x3F4i+3]x3 [x0F4i+3 · F4i+2]x0 [x1F4i+3 · F4i+2 · F4i+3]x1

= [x2F4i+2]x2 [x3F4i+3]x3 [x0F4i+4]x0 [x1F4i+5]x1 .

Then D(ri+1) = D(ri · t) holds, and ri+1 assigns x0 and x1 as t does. Hence, x0 is assigned
F4(i+1), and x1 is assigned F4(i+1)+1, as required by the claim. To see that D(ri+1) =
F4(i+1)+3, we observe that

D(ri+1) = D(ri · t)
= F4i+3 · D([x2F4i+2]x2 [x3F4i+3]x3 [x0F4i+4]x0 [x1F4i+5]x1)
= F4i+3 · F4i+2 · F4i+3 · F4i+4 · F4i+5

= F4i+5 · F4i+4 · F4i+5

= F4i+7 = F4(i+1)+3.

This concludes the proof. J

Also note that we can construct an M ∈ DTMFArej with L(M) = {Fn | n ≥ 0} by making
the right states ofM(β) accepting. In particular, this causes the cycle in M to have multiple
accepting states. The authors conjecture that this is unavoidable, and that L(β) is not a
DRX-language.

A.11 Proof of Lemma 22
Proof. To show that L ∈ L(TMFA), we construct a regex α for L, by α : =α1 ∨α2, where
α1 : = a(a4)∗, and α2 is the deterministic regex with L(α2) = {a4i | i ≥ 1} from Example 21.

Next, observe that L contains the arithmetic progression {a4i+1 | i ≥ 0}, and L : ={a}∗\L
contains the arithmetic progression {a4i+2 | i ≥ 0}. Assume that L is a DTMFA-language.
Then there is an A ∈ DTMFArej that accepts L or L. Then, by Lemma 10, L is regular
(note that in case L(A) = L, we also use that the class of regular languages is closed under
complementation). But as L is not regular, this is a contradiction. (To show that L is not
regular, first assume the contrary. Then L(α2) = L ∩ {a4}∗ would be regular, as the class of
regular languages is closed under intersection. But L(α2) is not regular, as for every pair
i 6= j, a4i and a4j are not Nerode-equivalent. J

A.12 Proof of Lemma 23
Proof. Before we assume the existence of an α ∈ DRX with L(α) = L (and use this to obtain
a contradiction), we first examine the structure of any M ∈ DTMFArej with L(M) = L. We
observe that, with the exemption of states that are unreachable or cannot reach an accepting
state, M must consist of a chain (which might be empty) that is followed by a cycle that
contains at least one final state (like a DFA for a unary language, see the proof of Theorem 25,
in particular the picture).

This is for the following reason: First, like for every DTMFA, each state of M that has
an outgoing memory recall transition cannot have any other outgoing transitions. The same
holds for ε-transitions. Furthermore, due to the structure of L, in M no state can have an
outgoing transition that consumes a and an outgoing transition that consumes b at the same
time. For DTMFA, this is not problematic. In fact, as L is regular, we can interpret any DFA
for L as a DTMFA for L. For example, consider the following minimal incomplete DFA for L,
and its corresponding notation as an occurrence graph (without markings):
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a

b

a

b

If we consider the occurrence graph notation, we see that this DFA cannot be obtained
from a deterministic regular expression (at least not using the Glushkov construction, which
– in the absence of variables – is identical to the construction from the proof of Theorem 17).
Note that the states for a and b belong to the same strongly connected component. Hence, if
there is an α ∈ DREG such that this automaton isM(α), then α must contain a subexpression
β+ with the occurrences a(i) and b(j) that correspond to these states. Then Gβ̃ must contain
edges from a(i) and b(j) to snk, and from src to a(i). Using the rule for Kleene plus from
the proof of Theorem 17, we see that Gα̃ must contain an edge from a(i) to itself. This is
a contradiction. Of course, this argument only shows that this DFA cannot be obtained
from a deterministic regular expression; but it can be generalized to show that there is no
α ∈ DREG with L(α) = L (see e. g. [9], and in particular [12], which explains how to apply
the technique from [9] on this language).

We shall now use a similar line of reasoning to obtain a contradiction from the assumption
that there is an α ∈ DRX with L(α) = L. As explained above, the DTMFA M(α) must
consist of a chain and a cycle (by definition, each state ofM(α) is reachable; and from each
state, we can reach an accepting state). This means that Gα̃ contains a cycle v1, . . . , vn for
some n ≥ 1 and vi ∈ (Σ̃ ∪ Ξ̃) such that there is an edge from vi to vi+1 for 1 ≤ i < n and
from vn to v1. Hence, each vi has at most two outgoing edges: One to the next node in the
cycle, and (if it is an accepting state) one to the sink node snk. Furthermore, exactly one vi
has an incoming edge from outside the cycle, let this be v1.

From the construction of Gα̃, this cycle must have been generated from a Kleene plus
in α. But this allows us to conclude that only exactly one vi can have an edge to snk; and
furthermore, that this must be vn. This can be concluded from the following reasoning: If
there existed nodes vi, vj with i 6= j, and both have an edge to snk, then the construction
for Kleene plus would require edges from both vi and vj to v1, which would break the cycle
structure. Likewise, if i 6= n, then there must be an edge from vi to v1, and from vi to vi+1,
which is a contradiction to our previous observations.

Hence, each iteration of the cycle must consume exactly one terminal letter (otherwise,
we would skip over words of L), alternating between a and b. Thus, vi ∈ Ξ̃ must hold for all
1 ≤ i ≤ n (as vi = a(j) with a(j) ∈ Σ̃ would consume a in every iteration). Assume that we
enter an iteration that consumes a (the same reasoning shall hold for b). Then no variable
that is recalled can contain b, and no variable can be bound to b, as otherwise, the iteration
would consume more than a. But in the next iteration, the same variables are recalled, and
as neither of them contains b, the iteration cannot consume b. Therefore, we arrive at a
contradiction, and conclude that there is no α ∈ DRX with L(α) = L. J

A.13 Proof of Theorem 25

Proof. Assume that L ⊆ {a}∗. Our goal is to construct an α ∈ DRX with L(α) = L. For
technical reasons, we assume that ε /∈ L (this is no problem, as for any α ∈ DRX with
ε /∈ L(α), (α∨ ε) ∈ DRX). If L is finite, L ∈ L(DREG), and hence L ∈ L(DRX). (As we shall
see, our construction can also be used for finite languages, by replacing αcycle in αchain

k below
with ε. But to streamline the argument, we only consider infinite L.)
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Let M be a DFA with L(M) = L. Assume that all states of M are reachable, and that
from each state, an accepting state can be reached. Then M has the following shape, (in
this picture, we do not distinguish between accepting and non-accepting states):

p0 p1 · · · pm

q1 q2

...

qn−1 qn−2

a a a

a
a

a

a
a

a

We refer to the states p0 to pm as the chain, and to the states q1, . . . , qn−1 and pm as the
cycle. Without loss of generality, we can assume that pm is accepting (the cycle contains at
least an accepting state; and as the automaton does not have to be minimal, we can extend
the chain of pi by unrolling the cycle until it starts with an accepting state).

Now there exists a k ≥ 1 and c1, . . . , ck ≥ 0 such that the words ac1 , ac1+c2 , . . . , ac1+···+ck

are exactly the words that are accepted in the chain (recall that we assume that pm is
accepting, and that p0 is not accepting, as ε /∈ L). Furthermore, there exists an ` ≥ 1
and b1, . . . , b` ≥ 1 such that the words ab1 , ab1+b2 , . . . , ab1+···+b` are exactly the words that
advance the cycle from pm to each of the accepting states. These conditions also imply
m =

∑k
i=1 ci and n =

∑`
i=1 bi.

As an additional restriction, we assume that b1 ≥ 2. This is possible for the following
reasons: If bi = 1 for all i, we can replace the cycle with the deterministic regular expression
a∗ and are done. Furthermore, if b1 = 1, but there is a bi ≥ 2, we can unroll the cycle into
the chain until b1 ≥ 2 (for the “new” b1).

We define α : =αchain
1 , where, for 1 ≤ i < k,

αchain
i : = aci(ε∨αchain

i+1 ),
αchain
k : =〈x` : a〉ack−1(ε∨αcycle).

Before we define αcycle, note that if we disregard the words that can be generated by
the subexpression αcycle, L(α) contains exactly the words that are accepted by the chain.
Furthermore, if we assume that αcycle is a deterministic regex and that its language does not
contain ε, we can conclude α ∈ DRX. Finally, note that if we first enter αcycle, the variable
x` contains a.

The central part of the construction is defining αcycle in such a way that it simulates the
cycle by generating exactly the words ab1 , ab1+b2 , . . . , ab1+···+b` . We define

αcycle : =
(
αshift · αcont

)+
,

αshift : =〈x0 : &x`〉〈x` : &x`−1〉 · · · 〈x2 : &x1〉〈x1 : &x0〉,

αcont : = &xb1−2
1 ·&xb2−1

2 · · · · ·&xb`−1
` .

The idea behind this definition is as follows: Before the first iteration of the Kleene plus,
x` contains a, and all other variables default to ε. Now, note that passing through αshift
shifts the a from x` to x1, or from xi to xi+1 for 1 ≤ i < `. As this cyclic shift needs an
extra variable, if x1 is set to a, x0 is also set to a (which is overwritten in the next iteration
of the plus).

Hence, in the i-th iteration of the plus, the variable xj with j : =((i− 1) mod `) + 1 is set
to a, and if j = 1, then x0 is also set to a. All other variables are set to ε. This means that
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L(TMFA) = L(RX)

L(DTMFA)

L(DTMFArej) L(DTMFAacc)

L(DRX) L(REG)

L(DREG)

Figure 3 An unflattened version of Figure 1.

αshift produces a2 in the i-th iteration if (i mod `) = 1, and a in all other iterations. This
is the reason we ensured that b1 ≥ 2 above, as we now use αcont to produce the remaining
letters. If j = 1, then the &xb1−2

1 in αcont produces ab1−2, which means that in this iteration,
αshift ·αcont produces aa ·ab1−2 = ab1 (recall that all other variables are set to ε). If j > 1, then
αcont used &xbj−1

j to produce abj−1, which means that αshift · αcont produces a · abj−1 = abj .
In conclusion, the i-th iteration of the Kleene plus in αcycle adds the word abj for

j : =((i − 1) mod `) + 1; which means that αcycle simulates the cycle. Hence, L(α) = L.
As αcycle contains no disjunctions or Kleene plus (except for the surrounding plus), it is
deterministic. As remarked above, this allows us to conclude α ∈ DRX. J

A.14 Figure 3 and Proof of Theorem 26

Proof. This follows from our previous observations as follows:

1. L(DREG) ⊂ L(DRX): The inclusion follows from the fact that our definition of determin-
ism for regex is an extension of the notion of determinism for proper regular expressions.
To see that the inclusion is proper, we recall any of the non-regular DRX-languages that
we have seen, for example {wcw | w ∈ {a, b}∗} and {an2 | n ≥ 0} from Example 15.

2. L(DRX) ⊂ L(DTMFArej): The inclusion follows from Theorem 17, it is proper due to the
language {(ab) 1

2 i | i ≥ 0}, see Lemma 23.
3. L(DTMFArej) ⊂ L(DTMFA): The inclusion holds by definition. It is proper as the

inclusion L(DTMFAacc) ⊂ L(DTMFA) also holds by definition, and as L(DTMFArej) and
L(DTMFAacc) are incomparable (see below).

4. L(DTMFA) ⊂ L(TMFA): Again, the inclusion holds by definition. Languages that
separate the two classes are for example the language of all ww (where w is from a
non-unary alphabet, see Example 8), and the language {a4i+1 | i ≥ 0} ∪ {a4i | i ≥ 1}
from Lemma 22.

5. L(TMFA) = L(RX) is the statement of Theorem 4.
6. L(DRX) and L(REG) are incomparable: Again, we can use {(ab) 1

2 i | i ≥ 0} from
Lemma 23, and a non-regular DRX-language, like {wcw | w ∈ {a, b}∗}.

7. L(DTMFArej) and L(DTMFAacc) are incomparable: Due to Proposition 12, over a unary
alphabet, for every non-regular language L ∈ L(DTMFArej), we have L ∈ L(DTMFArej) \
L(DTMFAacc), and L ∈ L(DTMFAacc) \ L(DTMFArej). Hence, we can choose e. g. L =
{an2 | n ≥ 0} and its complement to show the two classes to be incomparable.
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8. L(DRX) and L(DTMFAacc) are incomparable: We first note that, since L(REG) ⊆
L(DTMFAacc), the language {(ab) 1

2 i | i ≥ 0} is in L(DTMFAacc), but, due to Lemma 23,
not in L(DRX). Moreover, L = {an2 | n ≥ 0} ∈ L(DRX) (see Example 15), but if
L ∈ L(DTMFAacc), then, due to Theorem 17, also L ∈ L(DTMFArej) ∩ L(DTMFAacc),
which, by Proposition 12, leads to the contradiction L ∈ L(REG).

This concludes the proof. J

A.15 Proof of Theorem 27
Proof. The proofs for the operations that apply to both classes follow the same basic scheme:
We start with one (or more) DRX-language(s), and show that applying the operation yields
a language that is not a DTMFArej-language:
Union: We use L1 : ={a4i+1 | i ≥ 0} and L2 : ={a4i | i ≥ 1}, which are defined by the

deterministic regex α1 : = a(a4)∗, and α2 : = a2 · 〈x : a2〉 ·
(
〈y : &x ·&x〉 · 〈x : &y ·&y〉

)∗
,

see Example 21. Then L1 ∪ L2 /∈ L(DTMFArej), as shown in Lemma 22.
Concatenation: Define the deterministic regexes α3 : = a+ and α4 : =〈x : a∗〉 · b ·&x. Then
L(α4) = {aibai | i ≥ 0}, and L(α3) ·L(α4) = {aibaj | i > j ≥ 0}. As shown in Example 9,
L(α3) · L(α4) is not a DTMFArej-language.

Reversal: Let α5 : =〈x : a∗〉 · b ·&x · a+. Then α5 ∈ DRX, and L(α5) = {ajbai | i > j ≥ 0}.
Reversing L(α5) again gives us the language from Example 9.

Complement: This follows directly from Proposition 12. Consider e. g. {an2 | n ≥ 0}.
Homomorphism: Let α6 : =((c ·α1)∨(d ·α2)). Then α6 ∈ DRX, but h(L(α6)) = L1 ∪L2 for

the morphism h that is defined by h(x) : =x if x ∈ {a, b} and h(x) : = ε if x ∈ {c, d}.
Inverse homorphism: Define a morphism g by g(a) : = g(b) : = a, and g(c) : = b. Then let

L7 : = g−1(L(α4)) = {u · c · v | u, v ∈ {a, b}∗, |u| = |v|}. We use Lemma 7 to show that
L7 /∈ L(DTMFArej). Assume to the contrary that it is, and choose m ≥ 1. Then there
exist n ≥ m and words pn, vn that satisfy the conditions of Lemma 7. We now distinguish
the following cases: First, assume that pn does not contain the letter c. Then choose a
d ∈ {a, b} that is not the first letter of vn, and define u : = d · c · a|pn|+1. Then pnu ∈ L7;
but as vn is not a prefix of u, this contradicts Lemma 7. Now assume that pn contains c.
Then pn = w1cw2 with w1, w2 ∈ {a, b}∗, and |w1| ≥ |w2|+ n ≥ |w2|+m. Again, choose
d ∈ {a, b} such that d is not the first letter of vn, and define u : = d · a|w1|−|w2|−1. Then
pnu = w1cw3 for w3 = w2d · a|w1|−|w2|−1, and |w3| = |w1|. Hence, pnu ∈ L7, but as vn is
not a prefix of u, this contradicts Lemma 7.

Intersection: In order to show both claims on the intersection of L(DRX), it suffices to show
that we can obtain a language that is not a DRX-language by intersecting two deterministic
regular languages. Accordingly, we define deterministic regular expressions β1 : =(a(b∨ ε))∗
and β2 : = ε∨

(
a(b(a∨ ε))∗

)
(these expressions have been obtained by very minor modifications

to the expressions that Caron, Han, Mignot [12] use to show that L(DREG) is not closed
under intersection).

Let L8 = {(ab) 1
2 i | i ≥ 0}. To show that L8 = L(β1) ∩ L(β2), we follow the approach

from [12], and first considerM(β1) and the corresponding minimal incomplete DFA:

a

b

a

a

b
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Likewise, we considerM(β2) and the corresponding minimal incomplete DFA (which merges
the two states for a):

a b

a

a

a

b

b

Now it is easily seen that L8 = L(β1)∩L(β2). From Lemma 23, we know that L8 /∈ L(DRX).
Hence, the class of deterministic regex languages is not closed under intersection with
deterministic regular languages, which also implies that it is not closed under intersection. J

A.16 Proof of Theorem 28
Proof. We show this with a reduction from Post’s Correspondence Problem (PCP). Let
(u1, v1), . . . , (uk, vk) ∈ Σ∗ × Σ∗, k ≥ 1, be a PCP instance. Our goal is to construct
α, β ∈ DRX such that L(α) ∩ L(β) 6= ∅ if and only if there exists a sequence i1, . . . , in, n ≥ 1
and 1 ≤ ij ≤ k, such that ui1 · · ·uin = vi1 · · · vin . To do so, we first introduce an alphabet
A : ={a1 . . . , ak} such that A, Σ, and {#, $, ¢} are pairwise disjoint (at the end of the proof,
we discuss how this construction can be adapted to binary terminal alphabets). We then
define

α : =
( k∨
i=1

ai #ui〈x : Σ∗〉# vi〈y : Σ∗〉 $ &x# &y ¢
)∗
,

β : =A#〈z : Σ+〉# &z $
(
〈x : Σ+〉#〈y : Σ+〉 ¢A# &x# &y $

)∗
# ¢ .

To see that α is deterministic, note that the disjunction ranges over the letters from A. For
β, we observe that after each iteration of the starred subexpression, we read either a letter
from Σ, and start a new iteration, or #, which means that this was the last iteration.

We now claim that w ∈ L(α) ∩ L(β) if and only if there exist an n ≥ 1 and i1, . . . , in
with 1 ≤ ij ≤ k such that ui1 · · ·uin = vi1 · · · vin and w = w1 ¢w2 ¢ · · ·wn ¢, where

wj = aij #uij · · ·uin # vij · · · vin $uij+1 · · ·uin # vij+1 · · · vin .

Take note that wn always ends on $ #. Informally explained, w encodes how a solution of
the PCP instance is constructed, where the finished solution is in w1, and the start of the
construction is at wn. Starting at w1, the sequence of wj can be understood as splitting off
pairs of prefixes (uj , vj) from the solution, where each word wj also encodes which tuple
(uj , vj) is processed (by using the preceding symbol aj as a marker), and the words before
and after the pair is split off (to the left and right of $, respectively).

Here, α ensures that in each wj , uj and vj are split off correctly, while β ensures that
the “after” words of wj are the “before” words of wj+1. Hence, such a w exists if and only if
the instance of the PCP has a solution. As the existence of the latter is undecidable (see e. g.
Hopcroft and Ullman [32]), deciding L(α) ∩ L(β) 6= ∅ is also undecidable.

To adapt the construction to a binary alphabet (say, {a, b}), we use a morphism h : (A ∪
Σ ∪ {#, $, ¢})∗ → {a, b}∗ that is defined as follows:

h(ai) : = abia for all ai ∈ A,
h(bi) : = abia, where we assume an arbitrary ordering on Σ with Σ = {b1, . . . , b|Σ|},
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h(#) : = bab, h($) : = ba2b, and h(¢) : = ba3b.
If we apply h to α and β by applying h to each terminal, we obtain regex h(α) and h(β) such
that L(h(α)) ∩ L(h(β)) 6= ∅ if and only if the instance of the PCP has a solution. The only
problem is that these regex are not deterministic, as there are disjunctions that start with
the same terminal letter. But each of these disjunctions can be rewritten into a deterministic
disjunction by nesting the branches. For example, consider the disjunction (a1 ∨ a2 ∨ a3).
Using h, this becomes (aba∨ ab2a∨ ab3a), which is not deterministic, but can be rewritten
to the equivalent (ab(a∨(b(a∨ ba)))).

Now, note that if we apply this rewriting to the disjunctions to h(α) and h(β) (including
the disjunctions that are hidden in shorthand notations A and Σ), we obtain deterministic
regex. In particular, note that Kleene plus and Kleene star are only used on elements of
A∪Σ, and are always followed by either # or ¢. As the encodings of the former start with a,
while the encodings of the latter start with b, rewriting the disjunctions is enough to ensure
determinism. J

A.17 Proof of Theorem 29
This proof combines ideas from two proofs from [24]3, the aforementioned intersection
emptiness problem for vstar-free regex, and the conversion of so-called vset automata into
formulas of SpLog, a fragment of ECreg. We briefly discuss why these results cannot be
used directly: First, note that we could use that the intersection emptiness problem for
vstar-free regex is PSPACE-complete to conclude that the same problem for TMFAmcf is
decidable, by converting each Mi ∈ TMFA into an equivalent vstar-free regex. But the best
known trade-off in this direction is exponential4, which make this approach unsuitable for
a PSPACE upper bound. Second, we address the issue of vset-automata. In principle, a
vset-automaton can be understood as a TMFA that has no memory recalls, but simulates
these with added string equivalence predicates (basically, the relation of vset-automata to
TMFAmcf is analogous to the relation of regex formulas to RXvsf that is described in [24]).
Hence, the conversion of vset-automata and to ECreg from [24] could be used to convert
TMFAmcf to ECreg, but with one important caveat: In the runs of a vset-automaton, each
variable can only be opened and closed exactly once. In contrast to this, a TMFAmcf may act
multiple times on the same variable. In order to use the conversion of vset-automata to ECreg

for TMFAmcf , we would first need to convert the TMFAmcf to normal form (see Section A.3),
which – due to the exponential blowup – is not possible in a PSPACE-algorithm. Dealing with
this issue requires extra effort; but as we only want to decide intersection emptiness (instead
of converting TMFAmcf to ECreg-formulas), we can also simplify this constructions by just
guessing a class of accepting runs, instead of building formulas for all accepting runs. Hence,
the proof combines main idea of the proof of the conversion of RXvsf to ECreg (Theorem 28
in [24]) with the conversion of vset-automata (Theorem 21 in [24]), while including additional
modifications for the more complicated memory actions of vset-automata, and at the same
time avoiding the effort that is needed to convert anM ∈ TMFAmcf into an equivalent formula

3 The full version of [24] with all proofs is available at http://ddfy.de/sci/splog.pdf
4 Although the authors are not aware of a proof for the lower bound, the well-known exponential blowup

from NFA to REG suggests that this applies. On the other hand, there is a non-recursive trade-off
from RXvsf to REG (cf. [23]). Hence, in principle, it might be possible to counter-act the blowup from
TMFAmcf to RXvsf by using variables, although this seems highly unlikely, and would probably not work
in polynomial time (which we require to achieve a PSPACE upper bound). Either way, we conclude that
based on current knowledge, we cannot directly use the algorithm for RXvsf intersection emptiness to
decide intersection emptiness for TMFAmcf in PSPACE.

http://ddfy.de/sci/splog.pdf
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(by non-deterministically guessing one of finitely many sub-languages of L(M))5.

Proof. We begin with the first lower bound: As shown by Martens, Neven, and Schwentick [40]
(Theorem 3.10), the intersection emptiness problem for deterministic regular expressions
is PSPACE-complete (if |Σ| is not bounded; the paper does not discuss the unbounded
case, and the proof cannot be adapted directly). This problem is defined as follows: Given
β1, . . . , βn ∈ DREG for some n ≥ 2, is

⋂n
i=1 L(βi) = ∅? We use a new terminal letter # /∈ Σ,

and define

α : =〈x : Σ∗〉#
(
&x#

)n−1

β : =β1 #β2 # · · ·βn # .

First, observe that α and β are deterministic, as # /∈ Σ. Now w ∈ L(α) holds if and only
if w =

(
ŵ#

)n for some ŵ ∈ Σ∗, and w ∈ L(β) if and only there exist w1, . . . , wn ∈ Σ∗
with wi ∈ L(βi) and w = w1 #w2 # · · ·wn #. Hence, (L(α) ∩ L(β)) 6= ∅ if and only if⋂n
i=1 L(βi) 6= ∅. As this problem is PSPACE-complete, deciding (L(α) ∩ L(β)) ?= ∅ is

PSPACE-hard.
The second lower bound is a reduction from the intersection emptiness problem for DFA,

which is defined as follows: Given M1, . . . ,Mn ∈ DFA with n ≥ 2, is there a w ∈ Σ∗ with
w ∈ L(Mi) for all 1 ≤ i ≤ n? This problem is PSPACE-complete (cf. Kozen [35]). We take
a new terminal symbol # /∈ Σ, define α as above, and choose M to be the DFA for the
language L(M1) #L(M2) # · · ·#L(Mn) (as # does not occur in the languages of the DFA,
this is trivially possible). The reasoning continues as above; but as the DFA can be defined
on a binary alphabet, this proof does not require an unbounded alphabet.

The upper bound takes more work, including further definitions. Our goal is to encode the
intersection emptiness problem for TMFAmcf in ECreg, the existential theory of concatenation
with regular constraints, which we now introduce (for a more detailed definition and examples
on ECreg, see for example Freydenberger [24]).

One of the basic elements of ECreg-formulas are word equations: A pattern is a word
α ∈ (Σ ∪ Ξ)∗, and a word equation is a pair of patterns (ηL, ηR), which can also be
written as ηL = ηR (hence the name equation). A pattern substitution is a homomorphism
σ : (Ξ ∪ Σ)∗ → Σ∗ with σ(a) = a for all a ∈ Σ. It is a solution of a word equation (ηL, ηR)
if σ(ηL) = σ(ηR), and we write this as σ |= (ηL, ηR). Less formally, a pattern substitution
replaces all variables with terminal words (where multiple occurrences of the variable have
to be substituted in the same way), and it is a solution of an equation if both sides have the
same terminal word as a result.

The other basic building block are constraint symbols: For every ε-NFA A and every
x ∈ Ξ, we can use a constraint symbol CA(x). A pattern substitution σ satisfies CA(x) if
σ(x) ∈ L(A). We write this as σ |= CA(x).

The existential theory of concatenation with regular constraints ECreg is obtained by
combining word equations and constraint symbols using ∧, ∨ and existential quantification
over variables. Semantics are defined canonically: We have σ |= (ϕ1 ∧ ϕ2) if σ |= (ϕ1)
and σ |= ϕ2; and σ |= (ϕ1 ∨ ϕ2) if σ |= (ϕ1) or σ |= ϕ2. Finally, σ |= (∃x : ϕ) if there

5 We also avoid the extra effort that is needed to compute a SpLog-formula instead of an ECreg-formula; but
compared to the aforementioned savings, this is negligible. Nonetheless, we do note that by combining
all these proofs, it is possible to convert a TMFAmcf into an equivalent SpLog-formula of polynomial
size, which means that TMFAmcf can be used for the core spanners of [20]. But this is outside the scope
of the current paper.
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exists a w ∈ Σ∗ such that σ[x→w] |= ϕ, where the pattern substitution σ[x→w] is defined by
σ[x→w](x) : =w, and σ[x→w](y) : =σ(y) if y 6= x. In slight abuse of notation, we also write
w |= ϕ(x) if σ |= ϕ(x) holds for the pattern substitution σ(x) : =w.

For example, let ϕ(x) : =∃y :
(
(x = yby) ∧ CA(y)

)
, where A is an NFA with L(A) = {a∗}.

Then w |= ϕ(x) if and only if w = anban for some n ≥ 0.
Given an ECreg-formula ϕ, deciding the existence of a pattern substitution σ with σ |= ϕ

is PSPACE-complete, cf. Diekert[17].
We first prove the claim only for automata with rejecting trap states (as we shall see

further down, the case for accepting memory failure states requires only a small modification).
Before we proceed to the main idea of the construction, we first take a closer look at the
accepting runs of memory-cycle-free TMFA.

Let M ∈ TMFArej
mcf with M = (Q,Σ, δ, q0, F ) and memories {1, . . . , k}, and consider any

accepting run of M . As M is memory cycle free, whenever it takes a memory transition from
a state p to a state q, we know that p cannot occur anywhere else in the run. Otherwise,
it would be possible to repeat the memory transition from p to q arbitrarily often, which
would contradict the assumption that M is memory cycle free. Hence, we know that every
accepting run of M can use at most |Q| − 1 memory transitions.

This allows us to condense any accepting run of M by considering only its memory
transitions. Formally, for some 0 ≤ ` < |Q|, we define a condensed run κ = (~q, ~p, ~τ) of length
` as follows:

1. ~q = (q0, . . . , q`) is a sequence of states, where q0 is the starting state of M ,
2. ~p = (p0, . . . , p`) is a sequence of states, with p` ∈ F ,
3. ~τ = (τ1, . . . , τ`) is a sequence of memory transitions, where for each 1 ≤ i ≤ `, either

τi = (pi, xi, qi+1, si,1, . . . , si,k) with xi ∈ {1, . . . , k}, or
τi = (pi, bi, qi+1, si,1, . . . , si,k) for some bi ∈ (Σ ∪ {ε})

and si,j ∈ {o, c, r, �}, 1 ≤ j ≤ k. In the second case, we also require that there is at least
one j with si,j 6= �.

4. pi is reachable from qi without using memory transitions for all 0 ≤ i ≤ `.
The intuition is that we condense the run to a sequence of states (q0, p0, q1, p1, . . . , q`, p`)
that only contains the starting state q0, a final state p`, and the states before and after each
memory transition (as M runs from qi to pi only without memory transitions, and each
memory transition τi takes the automaton from pi to qi+1).

As we shall see, each condensed run κ can be converted in polynomial time into an ECreg

formula ϕκ(w) that defines exactly the language of all w ∈ L(M) for which there is an
accepting run of M that can be condensed to κ. In particular, the parts of the run between
each pair of states qi and pi (which involve no memory transitions) shall be handled by
appropriate regular constraints.

Now, givenM1, . . . ,Mn ∈ TMFArej
mcf , we proceed as follows to decide whether

⋂n
i=1 L(Mi) =

∅. First, we guess a condensed run κi for each Mi (as the length of each sequence is bounded
by the number of states of Mi and as PSPACE = NPSPACE, this is allowed). Next, we
convert each κi into an ECreg-formula ϕi(w) (as we shall see, this is possible in polynomial
time). Finally, we combine these into the formula ϕ(w) : =

∧n
i=1 ϕi(w), and decide whether

ϕ is satisfiable (as mentioned above, this is possible in PSPACE, see Diekert [17]). As ϕ is
satisfiable if and only if there exists a w ∈

⋂n
i=1 L(Mi), this proves the claim for TMFArej

mcf
(as mentioned above, we shall discuss the case of accepting failure states at the end of the
proof).
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We now discuss how to construct ϕκ from κ. Consider a word w ∈ L(M), and the
condensed run κ of length ` for any accepting run of M on w. Then w can be decomposed
into w = u0v1u1 · · · v`u` with ui, vi ∈ Σ∗ such that ui is the word that M consumes when
processing from qi to pi (without using memory tranisitons), and vi is the word that is
consumed when processing from pi−1 to qi (using the memory transition τi). This is illustrated
by the following picture:

q0 p0 q1 p1 · · · p`−1 q` p`
u0 v1

τ1

u1 v2
τ2

u`−1 v`
τ`

u`

Following this intuition, we define

ϕκ(w) : = ∃u0, . . . , u`, v1, . . . , v` :

(w = u0v1u1 · · · v`u`) ∧
∧̀
i=0

CMqi,pi
(ui) ∧

∧
i∈T

(vi = bi) ∧
∧
i∈R

(vi = ηi),

where the following holds:

1. for p, q ∈ Q, Mq,p is the ε-NFA that is obtained from M by removing all memory
transitions, using q as starting and p as only finite state,

2. T ⊆ {1, . . . , `} is the set of all i such that τi is not a memory recall (i. e., τi consumes bi),
3. R ⊆ {1, . . . , `} is the set of all i such that τi is a memory recall (i. e., τi recalls xi),
4. for each i ∈ R, we define ηi to describe the current content for xi (as the memory actions

are completely determined by the τj , this is directly possible by checking the τj with
j ≤ i). There are three possible cases:

a. if xi was never changed in a memory transition τj with j < i, then its value defaults
to ε, and we define ηi : = ε,

b. if xi was reset in a memory transition τj with j < i, and not changed between τj and
τi, we define ηi : = ε,

c. otherwise, there exist well-defined 1 ≤ j < j′ ≤ i such that xi was opened in
transition τj and closed in τj′ , and not changed between τj and τi. Hence, we define
ηi : = vjuj · · ·uj′ .

The constraints CMqi,pi
(ui) check that each ui conforms to a sequence of transitions that

takes M from qi to pi, without using memory transitions. The conjunction over the i ∈ T
ensures that the memory actions that are not memory recalls consume terminals correctly,
and the conjunction over the i ∈ R ensures that each memory recall refers to the right part
of the consumed input. Hence, for all w ∈ Σ∗, w |= ϕκ if and only if w ∈ L(M), and there
is an accepting run of M on w that can be condensed to κ. It is easily seen that ϕκ can
be constructed in polynomial time (and, hence, its size is polynomial in |Q|): We need to
construct `+ 1 ≤ |Q| automata Mqi,pi , each of which has at most |Q| states and at most |Q|2
transitions. Determining each ηi is also possible in time O(|Q|), be checking the previous
transitions τj .

This concludes the proof for the case of Mi ∈ TMFArej
mcf . For the case where the failure

state is accepting, we need to add a small extension: Instead of only considering condensed
runs for runs that reach a final state, we also need to consider the runs that end in a memory
recall that fails. Hence, we consider a condensed run κ of length ` < |Q|, such that τ`
is a memory recall transition for a variable x ∈ {1, . . . , k}. Then we construct ϕκ almost
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as explained above. The only difference is that we replace the equation (v` = η`) in the
conjunction over the elements of R with the following formula:(

∃z : (η` = v`z) ∧ CA(v`) ∧ CA(z)
)
∨
(∨
a∈Σ

∨
b∈Σ\{a}

∃y, z1, z2 : (v` = yaz1) ∧ (η` = ybz2)
)
,

where A is the minimal DFA for L(A) = Σ+. The left part of this disjunctions describes all
cases where v` is non-empty and a proper prefix of the content of x; the right part describes
all cases where v` and the content of x differ at at least one position (recall that the content
of x at this point of the run is represented by η`). Hence, this formula describes all cases
where this condensed run ends in a memory recall failure.

This shows that the approach also works for M ∈ TMFAacc
mcf . Hence, given M1, . . . ,Mk ∈

TMFAmcf , we can decide whether the intersection of all L(Mi) is empty by guessing a
condensed run κi for each Mi. If Mi ∈ TMFArej

mcf , we only need to consider runs that end
in final states; if Mi ∈ TMFAacc

mcf , we also need to consider runs that end in memory recall
failures. Either way, the length of κi is bounded by the number of states in Mi. We then
transform in polynomial time each κi into an ECreg-formula ϕi, and combine these into
ϕ : =

∧n
i=1 ϕi. Then w |= ϕ if and only if w ∈ L(Mi) for all i; and as satisfiability of ECreg-

formulas can be decided in PSPACE, intersection emptiness is also decidable in PSPACE.
As we already showed hardness at the very beginning of this proof, we conclude that the
problem is PSPACE-complete. J

A.18 Proof of Proposition 41

A word equation is a tuple (ηL, ηR) with ηL, ηR ∈ (Σ∪Ξ)∗, and a solution is a homomorphism
σ : (Σ ∪ Ξ)∗ → Σ∗ with σ(a) = a for all a ∈ Σ, such that σ(ηL) = σ(ηR). Even proving
that it is decidable whether a word equation has a solution was by no means trivial (see
Diekert [17, 18] for a detailed and a recent survey). Considering this, one might be under the
impression that using this for the proof of Theorem 29 is excessive. But even intersection
emptiness for DRXvsf is at least as hard as the satisfiability problem for word equations:

I Proposition 41. Given a word equation η over Σ, we can construct in linear time αL, αR ∈
DRXvsf over Σ ∪ {#} such that L(αL) ∩ L(αR) 6= ∅ holds if and only if η has a solution.

Proof. Let η = (ηL, ηR), and assume that x1, . . . , xk are the variables that occur in η. Let
# be a new terminal letter, # /∈ Σ, and define

αL : =〈x1 : Σ∗〉#〈x2 : Σ∗〉# · · · 〈xk : Σ∗〉#βL,

αR : =〈x1 : Σ∗〉#〈x2 : Σ∗〉# · · · 〈xk : Σ∗〉#βR,

where βL and βR are obtained from ηL and ηR (respectively) by replacing each occurrence of
a variable xi with the reference &xi. As # /∈ Σ, and as βL and βR consist only of a chain of
terminals and variable references, αL, αR ∈ DRX. Furthermore, w ∈ L(αL) ∩ L(αR) holds if
and only if there is a homomorphism σ : (Σ∪Ξ)∗ → Σ∗ with σ(a) = a for all a ∈ Σ such that

w = σ(x1) #σ(x2) # · · ·σ(xk) #σ(ηL)
= σ(x1) #σ(x2) # · · ·σ(xk) #σ(ηR),

which holds if and only if there is a solution σ of η. J
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A.19 Proof of Theorem 30
Proof. We use the simple fact that L1 ⊆ L2 holds if and only if L1 ∩ (Σ∗ \ L2) = ∅. Due to
Proposition 38, we can assume that M2 is complete (see Section A.4).

While we could use Theorem 29 together with Theorem 6 to show that the inclusion
problem is decidable, the proof of Theorem 6 uses a construction that can lead to an
exponential blowup in the number of states. The reason for this is that even in a complete
DTMFA, we cannot simply toggle the acceptance behaviour of states, as the automaton might
continue its computation by recalling memories that contain ε.

But as we shall see, it is possible to adapt the proof of Theorem 29 to handle this as well.
First, note that we do not need to consider how to handle memory recall failures, as this is
already part of the proof (we can simply add or remove the modifications that we discussed
for DTMFAacc). The first modification is that the algorithm now guesses a condensed run κ
that ends in an state p` that is not accepting. But to ensure that we can treat this state
as an accepting state, we need to ensure that no accepting state can be reached from it.
Instead of putting this into the formula, we make an additional guess: For each variable
x ∈ {1, . . . , k}, we also guess a language Lx such that Lx = {ε} or Lx = Σ+. Formally, in
addition to κ and `, the algorithm guesses a function f : {1, . . . , k} → {Mε,MΣ+}, where Mε

and MΣ+ are NFA with L(Mε) = {ε} and L(MΣ+) = Σ+.
It then checks whether it is possible to reach an accepting state from q, using only

ε-transitions and memory recalls for variables x with f(x) = Mε. If that is the case, the
algorithm rejects the guess. Otherwise, it constructs a formula ϕκ,f , which is obtained from
ϕκ by adding the following formula to the conjunction:

∃y1, . . . , yk :
∧

x∈{1,...,k}

(
(yx = η̂x) ∧ Cf(x)(yi)

)
,

where each η̂x is chosen to represent the content of the variable x in p`, like the ηj in the
proof of Theorem 29. Hence, this formula checks whether the contents of the variables when
reaching the state p` conform to the guessed function f .

Hence, for every word that would be rejected by M2, we can guess appropriate `, κ, and f ,
which allows us to decide the intersection emptiness of L(M1) and (Σ∗ \ L(M2)) in PSPACE
as in the proof of Theorem 29. Hence, inclusion is decidable in PSPACE. J

A.20 Proof of Proposition 31
We first need a more formal definition of `-determinism. Let ` ∈ N and let u, v ∈ Σ∗. The
words u and v are `-prefix equivalent, denoted by u≡` v, if u is a prefix of v, v is a prefix of
u or their longest common prefix has a size of at least `. By u 6≡` v, we denote that u and v
are not `-prefix equivalent. Note that in order to check for two words u and v whether or
not u≡k v, it is sufficient to compare the first min{k, |u|, |v|} symbols of u and v.

Based on this, we define the notion of `-deterministic TMFA as a relaxation of the criteria
of DTMFA: In contrast to the latter, an `-deterministic M ∈ TMFA(k) can have states q
with multiple outgoing memory recall-transitions, as long as these recall distinct memories,
and for every reachable configuration (q, v, (u1, r1), . . . , (uk, rk)) of M , ui 6≡` uj holds for all
i 6= j that appear on the recall transitions of q.

Proof. Let M ∈ `- DTMFA(k). We transform M into an equivalent DTMFA M ′ as follows.
We implement k auxiliary memories (called state-memories in the following) in the finite state
control, which can store words of length at most `, i. e., we replace every state q by states
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[q,m1,m2, . . . ,mk], where mi ∈ Σ∗, |mi| ≤ `, 1 ≤ i ≤ k. The general idea is that M ′ simu-
lates M in such a way that whenever M reaches a configuration (q, v, (u1, r1), . . . , (uk, rk)),
then M ′ reaches the configuration with state [q,m1,m2, . . . ,mk] and memory configurations
(u′i, ri), 1 ≤ i ≤ k, such that, for every i, 1 ≤ i ≤ k, ui = miu

′
i and if u′i 6= ε, then |mi| = k.

This can be achieved as follows.
Initially, all memories and state-memories are empty and closed (to this end, the finite

state control contains a flag for each state-memory, indicating whether or not it is open). If
M consults memory i, then M ′ consumes the content of the state-memory i from the input,
symbol by symbol, and then applies a memory recall instruction on memory i (note that
memory i might be empty). If the consumption of the content of state-memory i fails, i. e.,
it is not a prefix of the remaining input, then we move to the state [trap].

Whenever M opens memory i, M ′ empties the state-memory i and marks it as open,
but does not yet open memory i. The scanned input is now stored as follows. If a single
symbol is read and the state-memory currently stores a word of length at most `− 1, then
this symbol is appended to the state-memory (furthermore, if the new symbol exhausts the
state-memory’s capacity, then memory i is opened), and if the state-memory already stores
a word of length `, then the symbol is automatically stored in the open memory i.

On the other hand, if M consumes a prefix u of the input by a memory recall instruction
for some memory j, i. e., in M ′, the state-memory j stores some u′ and memory j stores some
u′′ with u = u′u′′, then this is simulated by M ′ as follows. We start consuming u′ symbol by
symbol and store every symbol in state-memory i. If this is possible without exhausting the
capacity of state-memory i (i. e., state-memory i now stores a word of length at most `− 1),
then |u′| < `, which implies u′′ = ε and we are done. On the other hand, if the consumption
of u′ exhausts the state-memories capacity, i. e., u′ = v′v′′, where v′ is the largest prefix that
fits in state-memory i (note that v′ = u is possible), then we open memory i and fill it with
v′′u′′ by first consuming v′′ symbol by symbol and then consulting memory j.

We implement the modifications from above in such a way that whenever in M there
is a nondeterministic choice of the form that, for some state q and several i1, i2, . . . , is,
1 ≤ ij ≤ k, 1 ≤ j ≤ s, each δ(q, ij), 1 ≤ j ≤ s, is defined (note that, since M is `-
deterministic, these are the only possible non-deterministic choices), then this is implemented
in M ′ by s many ε-transitions from the states [q,m1,m2, . . . ,mk]. Since the modifications
from above do not require any nondeterminism, there is a one-to-one correspondence between
the nondeterministic choices of M and M ′. We further note that, for every j, 1 ≤ j ≤ s, the
ε-transition for consulting memory ij is followed by a path of states, in which the content
of state-memory ij is consumed symbol by symbol, followed by a recall of memory ij (and,
simultaneously, for every open memory i, the state-memory is filled with the consumed
symbols until it is full and then memory i is opened). The memory recall performed by this
path of states either fails, which can happen in the phase where the content of the state-
memory is matched with the input or in the actual recall of the memory, or it successfully
simulates the memory recall. We shall now describe how the nondeterministic choices of M ′
can be removed.

Instead of nondeterministically choosing one of these paths, we carry them out in parallel
as follows. We start consuming a prefix of the remaining input and compare it, symbol
by symbol, with the contents of the state-memories ij , 1 ≤ j ≤ s. Whenever the next
input symbol does not match the next symbol of a state-memory ij , we mark this memory
as inactive and ignore it from now on. If all memories are inactive, we change to state
[trap] and if there is exactly one active memory ij left, we conclude the consultation of this
memory (i. e., we match the remaining part of the state-memory ij with the input and then
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consult memory ij). In particular, we note that if a state-memory has been completely and
successfully matched with a prefix of the input and there is a another memory still active,
then the contents of these memories are `-prefix equivalent, which is a contradiction to the
`-determinism of M . Consequently, we encounter the situation that either all memories are
inactive or that exactly one active one is left, before a state-memory is completely matched
with a prefix of the input. Obviously, this procedure is completely deterministic and it results
in an equivalent automaton. J

A.21 Proof of Proposition 32

Proof. Before we proceed to the actual proof, we briefly discuss why it is possible to treat non-
deterministic regex as an input for the problem, considering that the number of transitions in
M(α) can be exponential (in the number of variables of α). While this is true in general, the
non-deterministic regex that have these blowups are also not `-deterministic: As soon as an
M ∈ TMFA has more than one transition from one state to another, it is not `-deterministic.
Hence, we can use an algorithm that decides `-determinism for TMFA to decide `-determinism
for RX by converting every input α ∈ RX intoM(α) according to the proof of Theorem 17,
but aborting if Gα̃ contains nodes u and v with at least two edges from u and v (if these
occur, α can be rejected as not `-deterministic, regardless which ` was chosen).

Upper bounds: In order to prove the upper bounds, let M ∈ TMFA and ` ≥ 1. Assume
that M is not deterministic, but only violates the criteria by having states with multiple
outgoing memory recall transitions for different variables (if any other violation of the criteria
occurs, M cannot be `-deterministic). Now, M is not `-deterministic if and only if there
exists a state q in M that has outgoing memory recall transitions for two different variables
x and y, and there is a run of M that reaches q while x and y contain words wx and wy
(respectively) such that wx≡` wy. We show this property can be decided in PSPACE in
general, and in NP if M is memory-cycle-free. The claim of the Proposition follows then
directly if M is memory-cycle-free, and from the closure of PSPACE under complementation
in the general case.

We first consider the general case: The PSPACE algorithm guesses a state q that has two
outgoing memory recall transitions for variables x and y. It then guesses its way from q0
through the automaton, while storing for each variable z of M (not just x and y) the first `
letters of the stored word wz (in order to determine these for a memory z, it suffices to know
all terminal edges that are traversed while z is open, and at most ` letters of each memory z′
that is referenced while z is open). If the algorithm reaches q while wx≡` wy, the algorithm
correctly identifies M as not `-deterministic. Hence, this can be decided in PSPACE.

For the memory-cycle-free case, we combine this with the condensed runs from the proof
of Theorem 29. The NP-algorithm first guesses a condensed run κ of M that ends at q with
outgoing memory recall transitions for x and y. In order to determine the first ` letters of
each variable, it then guesses a prefix ui of length at most ` for each transition from a qi
to a pi, and checks whether there is a word in L(Mqi,pi) that has ui as a prefix (where the
ε-NFA Mqi,pi

is obtained as in the proof of Theorem 29: Remove all memory transitions
from M , and take qi as starting and pi as only accepting state). It then computes the
first ` letters of wx and wy, which suffice to determine whether wx≡` wy. If wx≡` wy, the
algorithm correctly identifies M as not `-deterministic. Hence, for memory-cycle-free TMFA,
the absence of `-determinism can be decided in NP, which means that `-determinism can be
decided in coNP.
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Lower bound for TMFAmcf and RXvsf : We prove this claim with a reduction from the
3-satisfiability problem, which is well-known to be NP complete (cf. Garey and Johnson [28]).
Let ϕ be a formula in 3-conjunctive normal form, with variables V = {v1, . . . , vk}, k ≥ 1,
where ϕ : =

∧n
i=1 ϕi with ϕi = (λi,1 ∨ λi,2 ∨ λi,3), and λi,j ∈ {v,¬v | v ∈ V } for all 1 ≤ i ≤ n

and 1 ≤ j ≤ 3.
Our goal is to construct a β ∈ RXvsf that is not `-deterministic if and only if there is

an assignment to the variables in V that satisfies ϕ. As the latter problem is NP-complete,
deciding whether a vsf-regex is `-deterministic is coNP-hard. To this end, we first construct
an α ∈ DRXvsf that has a variable z that can only contain ε if ϕ has a satisfying assignment,
and that otherwise contains a word from {a}+.

We then define β : =α · 〈z1 : b`〉〈z2 : &z b`〉(&z1 ∨&z2). Note that β is not `-deterministic
if and only if ε can be assigned to z; as otherwise, z always contains some word from a+b,
which means that z1 and z2 already differ on the first letter.

We implement this by modeling each variable vi ∈ V of ϕ with two variables xi and x̂i in
α, where an assignment of 1 to vi is modeled by setting xi to ε and x̂i to a, while assigning
0 is modeled by setting xi to a and x̂i to ε. Keeping this in mind, we define α : =αinit · αsat,
where

αinit : =α1
init · · ·αkinit,

αiinit : =
(
(a〈xi : ε〉〈x̂i : a〉)∨(b〈xi : a〉〈x̂i : ε〉)

)
for 1 ≤ i ≤ k, as well as

αsat : =α1
sat · · ·αnsat · 〈z : &y1 · · ·&yn〉,

αisat : =(a · αi,1lit )∨
(

b
(
(a · αi,2lit )∨(b · αi,3lit )

))
,

αi,jlit : =
{
〈yi : &xl〉 if λi,j = vl,
〈yi : &x̂l〉 if λi,j = ¬vl

for 1 ≤ i ≤ n, and 1 ≤ j ≤ 3.
Now, observe that α is deterministic, as each part of a disjunction starts with a unique

first letter (a or b); and α is obviously vstar-free. To see that α can assign ε to z if and only
if ϕ has a satisfying assignment, we read α from left to right: First, αinit ensures that for
each pair of variables xi and x̂i, exactly one is bound to ε, and the other to a (recall that
setting xi to ε corresponds to assigning 1 to vi). Next, for each clause ϕi, αisat stores the
value of one of the literals λi,j ∈ {vl,¬vl} under the chosen assignment yi, by recalling the
appropriate xl or x̂l. Thus, yi can only contain ε if the assignment satisfies ϕi. Finally, all
yi are concatenated, and the result is stored in z. Hence, z can only contain ε if all clauses
ϕi are satisfied, which means that ϕ is satisfied. Likewise, each satisfying assignment can be
used to make the appropriate choices in the αiinit and α

j
sat such that z contains ε.

Hence, as explained above, β is `-deterministic if and only if ϕ has no satisfying assignment,
which means that deciding whether a vstar-free regex is `-deterministic is coNP-hard. As we
already showed the matching upper bound, the problem is coNP-complete.

Lower bound for TMFA and RX: We show this with a reduction from the intersection
emptiness problem for DFA, which is defined as follows: Given M1, . . . ,Mn ∈ DFA for some
n ≥ 2, is there a w ∈ Σ∗ with w ∈ L(Mi) for all 1 ≤ i ≤ n? This problem is PSPACE-complete
(cf. Kozen [35]).
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As in the case for vstar-free regex, we first construct an α ∈ DRX that has a variable z
such that it is possible to assign ε to z if and only if the intersection of the L(Mi) is not
empty (and which is set to a word from {a}+ otherwise), and then define

β : =α · 〈z1 : b`〉〈z2 : &z b`〉(&z1 ∨&z2).

Again, β is not `-deterministic if and only if ε can be assigned to z; as otherwise, z always
contains some word from a+b.

Consider M1, . . . ,Mn ∈ DFA with Mi = (Σ, Qi, qi,0, δi, Fi). In order to simplify the con-
struction, we assume Qi = {qi,0, . . . , qi,m} for some m ≥ 1, and Σ ⊇ {a, b, c0, . . . , cmax(m,n)}.
We shall discuss in the proof how the construction can be adapted to a binary alphabet, but
using an unbounded alphabet is simpler.

The main idea of the construction is that each state qi,j is represented by a variable xi,j ,
which can take either a or ε as values. The regex α contains a subexpression αiter which uses
a Kleene star to simulate all Mi in parallel on the same input. In particular, it ensures that
xi,j can be set to ε if and only if Mi can enter state qi,j at the current point of the parallel
simulation. Using this, we shall see that it is possible to set z to ε if and only if all Mi can
reach an accepting state at the same time. We define

α : =αinit ·
(
a · αiter

)∗ · b · αacc

Before we define the subexpressions of α, we observe that the use of the Kleene star does not
affect determinism, as the terminals a and b signal whether there should be another iteration
of the star or not (respectively). The subexpressions of α are defined as follows:

αinit : =α1
init · · ·αninit,

αiinit : =〈xi,0 : ε〉〈xi,1 : a〉 · · · 〈xi,m : a〉

for all 1 ≤ i ≤ n. This represents that each automaton Mi is in its starting state q0,i.
Furthermore, to simulate the behaviour of the automata Mi, we define

αiter : =
(
(a · αa

step)∨(b · αb
step)

)
· αswitch,

αdstep : =αd,1step · · ·α
d,n
step,

αd,istep : =
∨

0≤j≤m

(
cj ·

( ∨
0≤l≤m,

δi(ql,i,d)=qj,i

cl · 〈x̂i,j : &xi,l〉
)
· αi,jdump

)
,

αi,jdump : =〈x̂i,0 : a〉 · · · 〈x̂i,j−1 : a〉〈x̂i,j+1 : a〉 · · · 〈x̂i,m : a〉,

αswitch : =α1
switch · · ·αnswitch,

αiswitch : =〈xi,0 : &x̂i,0〉 · · · 〈xi,m : &x̂i,m〉

for d ∈ {a, b}, 1 ≤ i ≤ n, and 0 ≤ j ≤ m. Each αd,istep picks a pair of states qi,j and qi,l of
Mi, such that δ(qi,l, d) = qi,j . Less formally, qi,j is the successor state of qi,l on input d. The
temporary variable x̂i,j is then set to the content of xi,l, while all other temporary variables
x̂i,j′ with j′ 6= j are set to a, using αi,jdump.

Hence, each iteration of αdstep can set x̂i,j to ε if and only if qi,j is the successor state on
input d for a state qi,l such that xi,l contains ε. In other words, each iteration of αiter uses a
subexpression αdstep to simulates all Mi in parallel on the input letter d ∈ {a, b}, and αswitch
sets each xi,j to the same content as its corresponding temporary variable x̂i,j .

As an aside, note that it is possible to adapt the construction to a binary terminal
alphabet. To do so, one replaces the disjunctions over the terminals cj and cl with nested
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disjunctions over a and b, as in the expressions αisat in the proof for the lower bound for
RXvsf above.

Regardless of the number of terminal letters, we define the remaining subexpressions as
follows:

αacc : =α1
acc · · ·αnacc · 〈z : &y1 · · ·&yn〉,

αiacc : =
∨

0≤j≤m,
qi,j∈Fi

cj · 〈yi : &xi,j〉

for all 1 ≤ i ≤ n. Again, this disjunction can be adapted to a binary terminal alphabet, as
described above.

It is possible to set z to ε if and only if every yi can be set to ε. In turn, this is possible
if and only if for every Mi, there is an accepting state qj,i such that xj,i can be set to ε. As
established above, αiter ensures that this is only possible if these states can be reached by
simulating all Mi in parallel on the same input. Hence, z can be set to ε if and only if the
intersection of all L(Mi) is not empty.

As discussed above, α is deterministic (we discussed the use of the Kleene star above,
and all branches disjunctions start with characteristic letters). Hence, β is `-deterministic if
and only if the intersection of the L(Mi) is empty. As β can obviously be constructed in
polynomial time, this shows that deciding whether a regex is `-deterministic is PSPACE-hard.
As we already established the matching upper bound, this concludes the whole proof. J

Furthermore, while this definition of `-determinism is only concerned with choices between
different variables, it is also possible to adapt the notion of 1-determinism to include the
distinction between a variable and a terminal. For example, 〈x : a+〉b(b∨&x)∗ is not
deterministic; but as the content of x always starts with a, such cases could be considered
1-deterministic. Propositions 31 and 32 can be directly adapted to this extended notion of
1-determinism.
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