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Abstract Document spanners are a formal framework for information ex-
traction that was introduced by Fagin, Kimelfeld, Reiss, and Vansummeren
(PODS 2013, JACM 2015). One of the central models in this framework are
core spanners, which formalize the query language AQL that is used in IBM’s
SystemT. As shown by Freydenberger and Holldack (ICDT 2016, ToCS 2018),
there is a connection between core spanners and ECreg, the existential theory
of concatenation with regular constraints. The present paper further develops
this connection by defining SpLog, a fragment of ECreg that has the same ex-
pressive power as core spanners. This equivalence extends beyond equivalence
of expressive power, as we show the existence of polynomial time conversions
between SpLog and core spanners. Consequences and applications include an
alternative way of defining relations for spanners, a pumping lemma for core
spanners, and insights into the relative succinctness of various classes of spanner
representations and their connection to graph querying languages. We also
briefly discuss the connection between SpLog with negation and core spanners
with a difference operator.

Keywords Information extraction · document spanners · word equations ·
xregex · descriptional complexity · CRPQs with string equality

1 Introduction

Fagin, Kimelfeld, Reiss, and Vansummeren [13] introduced document spanners
as a formal framework for information extraction in order to formalize the query
language AQL that is used in SystemT, the information extraction engine of
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IBM BigInsights [34]. On an intuitive level, document spanners can be viewed
as a generalized form of searching in a text w: In its basic form, search can
be understood as taking a search term u (or a regular expression α) and a
word w, and computing all intervals of positions of w that contain u (or a word
from L(α)). These intervals are called spans. Spanners generalize searching by
computing relations over spans of w.

In order to define spanners, [13] introduced regex formulas, which are regular
expressions with variables. Each variable x is connected to a subexpression α,
and when α matches a subword of w, the corresponding span is stored in x (this
behaves like the capture groups that are often used in real world implementa-
tion of search-and-replace functionality). Core spanners combine these regex
formulas with the algebraic operators projection π, union ∪, join ./ (on spans),
and string equality selection ζ=. Fagin et al. chose the term “core spanners”
as these capture the core of the query language AQL, and thereby the core
functionality of SystemT.

For example, assume the terminal alphabet Σ contains the usual ASCII
symbols, Σlet contains the lowercase letters a to z, and that we use to represent
the space symbol. Now consider the following regex formula:

αmail[xlocal, xdomain] := Σ∗ xlocal{(Σlet)
+} @ xdomain{(Σlet)

+.(Σlet)
+} Σ∗

Then αmail is a regex formula that matches (simplified) email addresses in the
text. In every match, it stores the span of local part of the address (before the
@) in the variable xlocal and the span of the domain part (after the @) in the
variable xdomain. Assume that the input word w contains each of the following
two subwords exactly once:

u := petra@example.com v := petra@example.edu

Then the result of αmail on w is a table that contains an entry that assigns the
span of petra for the occurrence of u to xlocal and the span of the corresponding
example.com to xdomain. It also contains an element that assigns the spans
of petra for the occurrence of v to xlocal and the span for the corresponding
example.edu to xdomain. Each additional occurrence of these words would
produce another entry in the result table (and so would other parts of w that
match). Using relational operators, core spanners can define more complicated
queries, like the following:

ρ := π∅ζ
6=
xdomain,ydomain

ζ=xlocal,ylocal
(αmail[xlocal, xdomain] ./ αmail[ylocal, ydomain])

Read from the inside out, ρ first builds two tables with spans for user and
local parts of email addresses, as described above. These tables are then joined
with ./; and as the tables use different variables, this join acts like a cross
product. After this, the string equality selection ζ=xlocal,ylocal

ensures that in all
remaining entries, the variables xlocal and ylocal describe the same word (but not
necessarily at the same positions). Analogously, the string inequality selection
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ensures that the variables for the domain parts describe different words1. Finally,
the projection turns ρ into a Boolean spanner (which returns only the empty
tuple for “true”, or the empty set for “false”). From our discussion, we conclude
that ρ returns true if and only if the input text contains two email addresses
that have the same local part, but different domains. So, if w contained the two
example words u and v from above, ρ would return “true”; but if w consisted
only of multiple occurrences of u, then ρ would return “false” (e. g., if w = u99).

The main topic of this paper is a logic that captures core spanners. Freyden-
berger and Holldack [16] connected core spanners to ECreg, the existential theory
of concatenation with regular constraints. Described very informally, ECreg is
a logic that combines equations on words (like xaby = ybax) with positive
logical connectives, and regular languages that constrain variable replacement.
In particular, [16] showed that every core spanner can be transformed into an
ECreg-formula, which can then be used to decide satisfiability. Furthermore,
while every ECreg-formula can be converted into an equisatisfiable core spanner,
the resulting spanner cannot be used to evaluate the formula directly (as the
encoding requires that the input word w of the spanner encodes the formula).

This paper further develops the connection of core spanners and ECreg. As
main conceptual contribution, we introduce SpLog (short for spanner logic), a
natural fragment of ECreg that has the same expressive power as core spanners.
In contrast to the PSPACE-complete combined complexity of ECreg-evaluation,
the combined complexity of SpLog-evaluation is NP-complete, and its data
complexity is in NL. As main technical result, we prove polynomial time
conversions between SpLog and spanner representations (in both directions),
even if the spanners are defined with automata instead of regex formulas.

As a consequence, SpLog can augment (or even replace) the use of regex
formulas, automata, or relational operators in the definition of core spanners.
Moreover, this shows that the PSPACE upper bounds from [16] for deciding
satisfiability and hierarchicality of regex formula based spanners apply to
automata based spanners as well. We also adapt a pumping lemma for word
equations to SpLog (and, hence, to core spanners). The main result also provides
insights into the relative succinctness of classes of automata based spanners:
While there are exponential trade-offs between various classes of automata,
these differences disappear when adding the algebraic operators.

In addition to these immediate uses and insights, the author also expects
that SpLog will simplify future work on core spanners; in particular as the
semantics of SpLog might be considered simpler than the semantics of core
spanners and their variants. While the present paper mostly deals with core
spanners (which use string equalities), we also introduce an alternative way of
defining the semantics of the underlying regex formulas and v-automata using
so-called ref-words. We shall see that this allows us to use various tools from
automata theory with little or no extra effort.

1 As we shall see in Section 5.1, string inequality selections can be used despite the fact
that the definition of core spanners allows only equality selections.
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From a more general point of view, this paper can also be seen as an
attempt to connect spanners to the research on equations on words and on
groups (cf. Diekert [11,10] for surveys), where ECreg has been studied as a
natural extension of word equations. We shall see that SpLog is a natural
fragment of ECreg: On an informal level, SpLog has to express relations on a
word w without using additional working space (which explains the friendlier
complexity of evaluation, in comparison to ECreg).

This gives reason to hope that SpLog can be applied to other models, like
graph databases. In fact, we shall see that fragments of SpLog have natural
counterparts in graph querying formalisms, if the latter are restricted to paths.
As a related example of using ECreg for graph databases, Barceló and Muñoz [3]
use a restricted class of ECreg-formulas for which data complexity is also in NL.

The paper is structured as follows: Section 2 gives the definitions of ECreg

and of spanners. Section 3 examines the notion of functional automata that
provides additional context for the main result, as well as an efficient evaluation
algorithm. Section 4 introduces SpLog (the main topic) and provides polynomial
time transformations between SpLog-formulas and core spanners. We then
examine properties of SpLog: Section 5 discusses how SpLog can be used to
express relations and languages. In addition to offering an alternative way of
defining relations for core spanners, this section also introduces and applies a
normal form for SpLog, and gives an efficient conversion of a subclass of xregex
(regular expressions with back-references) to SpLog. Section 6 examines what is
not possible in SpLog: We use an EC-inexpressibility method to obtain the first
general SpLog-inexpressibility method that does not rely on unary alphabets. We
also briefly discuss separating SpLog from ECreg. Section 7 explores connections
between fragments of SpLog and graph querying languages, and uses this to
obtain new restrictions on previous undecidability and descriptional complexity
results for core spanners. Section 8 extends SpLog with negation, and connects
the resulting logic SpLog¬ to core spanners with difference. Section 9 concludes
the paper.

2 Preliminaries

Let Σ be a fixed finite alphabet of (terminal) symbols. Except when stated
otherwise, we assume |Σ| ≥ 2. Let Ξ be an infinite alphabet of variables that
is disjoint from Σ. We use ε to denote the empty word. For every word w
and every letter a, let |w| denote the length of w, and |w|a the number of
occurrences of a in w. A word x is a subword of a word y if there exist words
u, v with y = uxv. We denote this by x v y; and we write x 6v y if x v y does
not hold. For words x, y, z with x = yz, we say that y is a prefix of x, and z
is a suffix of x. A prefix or suffix y of x is proper if x 6= y. For every k ≥ 0, a
k-ary word relation (over Σ) is a subset of (Σ∗)k. Given a nondeterministic
finite automaton (NFA) A (or a regular expression α), we use L(A) (or L(α))
to denote its language. In NFAs, we allow the use of ε-transitions (this model
is also called ε-NFA in literature).
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The remainder of this section contains the models that this paper connects:
word equations ECreg in Section 2.1, and document spanners in Section 2.2.

2.1 Word Equations and ECreg

A pattern is a word α ∈ (Σ ∪ Ξ)∗, and a word equation is a pair of patterns
(ηL, ηR), which can also be written as ηL = ηR. A pattern substitution (or
just substitution) is a morphism σ : (Ξ ∪ Σ)∗ → Σ∗ with σ(a) = a for all
a ∈ Σ. Recall that a morphism from a free monoid A∗ to a free monoid B∗ is
a function h : A∗ → B∗ such that h(x · y) = h(x) · h(y) for all x, y ∈ A∗. Hence,
in order to define h, it suffices to define h(x) for all x ∈ A. Therefore, we can
uniquely define a pattern substitution σ by defining σ(x) for each x ∈ Ξ.

A substitution σ is a solution of a word equation (ηL, ηR) if σ(ηL) = σ(ηR).
The set of all variables in a pattern α is denoted by var(α). We extend this to
word equations η = (ηL, ηR) by var(η) := var(ηL) ∪ var(ηR).

The existential theory of concatenation EC is obtained by combining word
equations with ∧, ∨, and existential quantification over variables. Formally,
every word equation η is an EC-formula, and σ |= η if σ is a solution of η. If
ϕ1 and ϕ2 are EC-formulas, so are ϕ∧ := (ϕ1 ∧ ϕ2) and ϕ∨ := (ϕ1 ∨ ϕ2), with
σ |= ϕ∧ if σ |= ϕ1 and σ |= ϕ2; and σ |= ϕ∨ if σ |= ϕ1 or σ |= ϕ2. Finally,
for every EC-formula ϕ and every x ∈ Ξ, we have that ψ := (∃x : ϕ) is an
EC-formula, and σ |= ψ if there exists some w ∈ Σ∗ with σ[x→w] |= ϕ, where
σ[x→w] is defined by σ[x→w](y) := w if y = x, and σ[x→w](y) := σ(y) if y 6= x.

We also consider ECreg, the existential theory of concatenation with regular
constraints. In addition to word equations, ECreg-formulas can use constraints
CA(x), where x ∈ Ξ is a variable, A is an NFA, and σ |= CA(x) if σ(x) ∈ L(A).
As every regular expression can be directly converted into an equivalent NFA,
we also allow constraints Cα(x) that use regular expressions instead of NFAs.
We freely omit parentheses, as long as the meaning of the formula remains
unambiguous. Existential quantifiers may also range over multiple variables: In
other words, we use ∃x1, x2, . . . , xk : ϕ as a shorthand for ∃x1 : ∃x2 : . . . ∃xk : ϕ.

The set free(ϕ) of free variables of an ECreg-formula ϕ is defined by free(η) =
var(η), free(ϕ1 ∧ϕ2) := free(ϕ1 ∨ϕ2) := free(ϕ1)∪ free(ϕ2), and free(∃x : ϕ) :=
free(ϕ)− {x}. Finally, we define free(C) = ∅ for every constraint C. One could
also argue in favor of free(C(x)) = {x}; but for us, this question is moot, as
our definitions in Section 4 will exclude this fringe case2 the definitions in
Section 4.

For all ϕ ∈ ECreg, let JϕK := {σ | σ |= ϕ}. For every C ⊆ ECreg, we
define JCK := {JϕK | ϕ ∈ C}. Two formulas ϕ1, ϕ2 ∈ ECreg are equivalent if
free(ϕ1) = free(ϕ2) and Jϕ1K = Jϕ2K. We write this as ϕ1 ≡ ϕ2. For increased
readability, we use ϕ(x1, . . . , xk) to denote free(ϕ) = {x1, . . . , xk}. Building

2 More specifically, the distinction between these two definitions is only meaningful when
dealing with constraints on variables that do not occur in word equations (like in formulas
that consist only of constraint symbols). From an ECreg point of view, this are possible
(although not of particular importance); but for spanners, these are not relevant.
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on this, we also use (w1, . . . , wk) |= ϕ(x1, . . . , xk) to denote σ |= ϕ for the
substitution σ that is defined by σ(xi) := wi for 1 ≤ i ≤ k.

Example 2.1 Consider the EC-formula ϕ1(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ)
and the ECreg-formula ϕ2(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ ∧ CΣ+(z)) . Then
σ |= ϕ1 if and only if σ(x) and σ(y) have σ(z) as common prefix. If, in addition
to this, σ(z) 6= ε, then σ |= ϕ2. �

Word equations and EC have the same expressive power (cf. Choffrut and
Karhumäki [6] or Karhumäki, Mignosi, and Plandowski [30]). More formally, for
every EC-formula ϕ, one can construct a word equation η with var(η) ⊇ free(ϕ),
such that σ |= ϕ if and only if there is a σ′ with σ′ |= η and σ′(x) = σ(x) for
all x ∈ free(ϕ). This can directly be extended to convert any ECreg-formula
into a word equation with constraints (cf. Diekert [10]). For conjunctions, the
construction is easily explained: Choose distinct a, b ∈ Σ. Hmelevskii’s pattern
pairing function is defined by 〈α, β〉 := αaβαbβ. Then (αL = αR) ∧ (βL = βR)
holds if and only if 〈αL, βL〉 = 〈αR, βR〉. This follows from a simple length
argument, where the terminals a and b act as “barriers” that prevent unintended
equalities (see Section 5.3 of [6] for details). The construction for disjunctions is
similar, but it is also more involved and introduces new variables. Furthermore,
converting alternating disjunctions and conjunctions may increase the size
exponentially.

2.2 Document Spanners

2.2.1 Spanners and Primitive Spanner Representations

Let w := a1a2 · · · an be a word over Σ, with n ≥ 0 and a1, . . . , an ∈ Σ. A span
of w is an interval [i, j〉 with 1 ≤ i ≤ j ≤ n+ 1. For each span [i, j〉 of w, we
define w[i,j〉 := ai · · · aj−1. That is, each span describes a subword of w by its
bounding indices.

Example 2.2 Let w := aabbcabaa. As |w| = 9, both [3, 3〉 and [5, 5〉 are spans
of w, but [10, 11〉 is not. As 3 6= 5, the two spans are not equal, even though
w[3,3〉 = w[5,5〉 = ε. The whole word w is described by the span [1, 10〉. �

Let V ⊂ Ξ be finite, and let w ∈ Σ∗. A (V,w)-tuple is a function µ that
maps each variable in V to a span of w. If V is clear, we write w-tuple instead
of (V,w)-tuple. A set of (V,w)-tuples is called a (V,w)-relation. A spanner is a
function P that maps every w ∈ Σ∗ to a (V,w)-relation P (w). Let V be denoted
by SVars (P ). Two spanners P1 and P2 are equivalent if SVars (P1) = SVars (P2),
and P1(w) = P2(w) for every w ∈ Σ∗.

Hence, a spanner can be understood as a function that maps a word w
to a set of functions, each of which assigns spans of w to the variables of the
spanner. We now examine a formalism that can be used to define spanners.
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Definition 2.3 A regex formula is an extension of regular expressions to
include variables. The syntax is specified with the recursive rules

α := ∅ | ε | a | (α ∨ α) | (α · α) | (α)∗ | x{α}

for a ∈ Σ, x ∈ Ξ. We add and omit parentheses freely, as long as the meaning
remains clear; and we use α+ and Σ as shorthands for α · α∗ and

∨
a∈Σ a,

respectively.

Both syntax and semantics of regex formulas can be seen as special case
of so-called xregex, a model that extends classical regular expressions with a
repetition operator (see Section 5.3 for a brief and [16] for a more detailed
discussion). In particular, both models define their syntax with parse trees,
which is rather inconvenient for many of our proofs. Instead of using this
definition, we present one that is based on the ref-words (short for reference
words) of Schmid [41]. A ref-word is a word over the extended alphabet (Σ∪Γ ),
where Γ := {`x, ax | x ∈ Ξ}. Intuitively, the symbols `x and ax mark the
beginning and the end of the span that belongs to the variable x. In order
to define the semantics of regex formulas, we treat them as generators of
ref-languages (i. e., languages of ref-words).

Definition 2.4 For every regex formula α, we define its ref-language R(α)
by R(∅) := ∅, R(a) := {a} for a ∈ Σ ∪ {ε}, R(α1 ∨ α2) := R(α1) ∪ R(α2),
R(α1 · α2) := R(α1) · R(α2), R(α∗1) := R(α1)∗, and R(x{α1}) := `xR(α1)ax.

Let SVars (α) be the set of all x ∈ Ξ such that x{ } occurs in α. A ref-word
r ∈ R(α) is valid if, for every x ∈ SVars (α), we have |r|`x = 1.

Let Ref(α) := {r ∈ R(α) | r is valid}. We call α functional if Ref(α) =
R(α), and denote the set of all functional regex formulas by RGX.

In other words, R(α) treats α like a standard regular expression over the
alphabet (Σ ∪ Γ ), where x{α1} is interpreted as `xα1ax. Furthermore, Ref(α)
consists of those words where each variable x is opened and closed exactly once.

Example 2.5 Define regex formulas α := (x{a}y{b}) ∨ (y{a}x{b}), β1 :=
x{a}∨ y{a}, β2 := x{a}x{a}, and β3 := (x{a})∗. Then α is a functional, while
β1 to β3 are not. �

Like [13,16], we adopt the convention that a regex formula is functional,
unless we explicitly note otherwise3. Hence, without loss of generality, we
assume that no variable binding x{ } occurs under a Kleene star ∗, and that
no variable binding x{} occurs inside a binding for the same variable.

The definition of R(α) implies that every r ∈ Ref(α) has a unique factor-
ization r = r1`xr2axr3 for every x ∈ SVars (α). This can be used to define
µ(x) (i. e., the span that is assigned to x). To this end, we define a morphism
clr : (Σ ∪ Γ )∗ → Σ∗ by clr(a) := a for all a ∈ Σ, and clr(g) := ε for all g ∈ Γ

3 To be precise, the present paper and [16] follow the naming conventions of the conference
version of [13]. In contrast to this, [13] uses the term “regex formula” exclusively for what
we call “functional regex formula”, and “variable regex” for what we call a “regex formula”.
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(in other words, clr projects ref-words to Σ). Then clr(r1) contains the part of
w that precedes µ(x), and clr(r2) contains wµ(x).

For α ∈ RGX and w ∈ Σ∗, let Ref(α,w) := {r ∈ Ref(α) | clr(r) = w}. Then
each r ∈ Ref(α,w) encodes a w-tuple µr that is consistent with α:

Definition 2.6 Let α ∈ RGX, w ∈ Σ∗, and V := SVars (α). Every r ∈
Ref(α,w) defines a (V,w)-tuple µr in the following way: For every x ∈ Vars (α),
there exist uniquely defined r1, r2, r3 with r = r1`xr2axr3. Then µr(x) := [i, j〉,
with i := |clr(r1)| + 1 and j := |clr(r1r2)| + 1. The function JαK from words
w ∈ Σ∗ to (V,w)-relations is defined by JαK(w) := {µr | r ∈ Ref(α,w)}.

Example 2.7 Assume that a, b ∈ Σ. We define the functional regex formula

α := Σ∗ · x
{
a · y{Σ∗} · (z{a} ∨ z{b})

}
·Σ∗.

Let w := baaba. Then JαK(w) consists of the tuples in the table to the left (we
also picture w and its positions to the right):

µ(x) µ(y) µ(z)

[2, 4〉 [3, 3〉 [3, 4〉
[2, 5〉 [3, 4〉 [4, 5〉
[2, 6〉 [3, 5〉 [5, 6〉
[3, 5〉 [4, 4〉 [4, 5〉
[3, 6〉 [4, 5〉 [5, 6〉

b a a b a

1 2 3 4 5

As one example of an r ∈ Ref(α,w), consider r = b`xa`yaay`zbazaxa, which
defines µr(x) = [2, 5〉, µr(y) = [3, 4〉, and µr(z) = [4, 5〉, and corresponds to
the following picture:

b `x a `y a ay`z b azax a

1 2 3 4 5

Although using ref-words is often convenient, it comes with a caveat. While
Ref(α1) = Ref(α2) implies Jα1K = Jα2K, the converse does not hold: For
example, consider α1 := x{y{a}} and α2 := y{x{a}}, and the ref-words
r1 := `x`yaayax and r2 := `y`xaaxay with ri ∈ Ref(αi). Although r1 6= r2,
both define the same a-tuple µ (with µ(x) = µ(y) = [1, 2〉). �

It is easily seen that the definition of JαK via ref-words is equivalent to the
definition from [13]. Defining the semantics by ref-words has two advantages:
Firstly, treating R(α) as a language over (Σ ∪ Γ ) allows us to use standard
techniques from automata theory with little or no extra effort (see Section 3 in
particular). Secondly, it generalizes naturally to vset- and vstk-automata, two
models for defining spanners that we are going to discuss next. Both models
were introduced in [13], using an equivalent definition of behavior that is based
on runs. We begin with the first model.
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Definition 2.8 Let V ⊂ Ξ be a finite set of variables, and define ΓV :=
{`x,ax | x ∈ V }. A variable set automaton (vset-automaton) over Σ with
variables V is a tuple A = (Q, q0, qf , δ), where Q is the set of states, q0, qf ∈ Q
are the initial and the final state, and δ : Q × (Σ ∪ {ε} ∪ ΓV ) → 2Q is the
transition function. Let SVars (A) denote the set of all x ∈ V such that `x or
ax occurs on a transition in δ.

We interpret A as a directed graph, where the nodes are the elements of Q,
each q ∈ δ(p, λ) is represented with an edge from p to q with label λ, where
p ∈ Q and λ ∈ (Σ ∪ {ε} ∪ ΓV ). We extend δ to δ∗ : Q × (Σ ∪ ΓV )∗ → 2Q

such that for all p, q ∈ Q and r ∈ (Σ ∪ ΓV )∗, we have q ∈ δ∗(p, r) if and only
if there is a path from p to q that is labeled with r. We use this to define
R(A) := {r ∈ (Σ ∪ ΓV )∗ | qf ∈ δ∗(q0, r)}.

An r ∈ R(A) is valid if, for every x ∈ V , |r|`x = |r|ax = 1, and `x occurs
to the left of ax. We define Ref(A), Ref(A,w), and JAK as for regex formulas.

Hence, a vset-automaton can be understood as an NFA over Σ that has
additional transitions that open and close variables. When using ref-words, it
is interpreted as NFA over the alphabet (Σ ∪ Γ ), and defines the ref-language
R(A); and Ref(A) is the subset of R(A) where each variable in V is opened and
closed exactly once (and the two operations occur in the correct order). This also
demonstrates why our definition is equivalent to the definition from [13] (there,
opening and closing every variable exactly once is ensured by the definition of
the successor relation for configurations). In particular, every word in Ref(A)
encodes an accepting run of A (as defined in [13]).

Fagin et al. [13] also introduced another model, the variable stack automaton
(vstk-automaton). Its definition is almost identical to then vset-automaton;
the only difference is that instead of using a distinct symbol ax for every
variable x, vstk-automata have only a single closing symbol a, which closes
the variable that was opened most recently (hence the “stack” in “variable
stack automaton”). From now on, we assume that Γ may include a instead of
the symbols ax (which type of closing symbol is used shall be clear from the
context), and adapt clr by defining clr(a) := ε.

For every vstk-automaton A, we define R(A) and SVars (A) analogously to
vset-automata. Accordingly, Ref(A) is the set of all valid r ∈ R(A), where r is
valid if, for each x ∈ V , we have that `x occurs exactly once in w, and is closed
by a matching a. More formally, r is valid if |r|a =

∑
x∈SVars(A) |r|`x , and for

every x ∈ V , we have that |r|`x = 1 and r can be uniquely factorized into
r = r1`xr2a r3, with |r2|a =

∑
x∈V |r2|`x . This unique factorization allows us

to obtain µr from r ∈ Ref(A) analogously to vset-automata.

We use v-automaton as general term that encompasses vset- and vstk-
automata. Furthermore, we call a v-automaton trim if every state is reachable
from its initial state, and the final state can be reached from every state.
Each v-automaton can be turned straightforwardly into an equivalent trim
v-automaton of the same type: Given some v-automaton A, let Atrim denote
the automaton that is obtained from A by removing all states that are not
reachable from the initial state, or from which the final state cannot be reached.
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a

`x

a

`y

a,ax,ay a

`x

a

`y

a,a

Fig. 1 A vset-automaton Aset (left) and a vstk-automaton Astk (right). Then Ref(Aset)
consist of ref-words ai1`xai2`yai3az1ai4az2ai5 , with i1, . . . , i5 ≥ 0, z1, z2 ∈ {x, y} and
z1 6= z2. Similarly, the ref-words from Ref(Astk) are of the form ai1`xai2`yai3a ai4a ai5 ,
with i1, . . . , i5 ≥ 0. The left a closes y, and the right a closes x.

Then R(Atrim) = R(A), which implies JAK = JAtrimK. Thus, if A has n states
and m transitions, then Atrim can be constructed in time O(m + n) using a
standard reachability analysis (e. g. by breadth-first search, see Cormen et
al. [8]). For our purposes, this complexity is negligible; thus, we assume that
every v-automaton is trim unless explicitly noted otherwise. We define the size
of a v-automaton as the number transitions (for trim automata, the number of
transitions dominates the number of states). Hence, assuming that Σ is fixed
and keeping in mind that we consider trim automata by convention, the upper
bound for the size of a v-automaton with n states and k variables is O(kn2).

Let VAset and VAstk be the classes of all trim vset-automata and all trim
vstk-automata (respectively), and define VA := VAset ∪ VAstk. Examples for
vset- and vstk-automata can be found in Figure 1.

Finally, observe that we can straightforwardly convert each regex formula
α into a vset-automaton A with R(A) = R(α): First, we treat each x{· · · }
as `x · · · ax, thus interpreting α as regular expression for R(α). Then, we
transform this regular expression into a finite automaton. Finally, we ensure
that the resulting automaton has exactly one final state (Definition 2.8 follows
Fagin et al. [13] in requiring this). This allows us to use any algorithm that
transforms a regular expression into an NFA, see Gruber and Holzer [26] for a
survey that also considers complexity issues. An analogous observation can be
made for the transformation to vstk-automata.

2.2.2 Spanner Algebras

In order to capture the expressive power of AQL, Fagin et al. [13] also defined
the following spanner operators.

Definition 2.9 Let P, P1, and P2 be spanners. The algebraic operators union,
projection, natural join and selection are defined as follows for all w ∈ Σ∗.

Union: If SVars (P1) = SVars (P2), we define (P1 ∪ P2), the union of P1 and
P2, by SVars (P1 ∪ P2) := SVars (P1) and (P1 ∪ P2)(w) := P1(w) ∪ P2(w).

Projection: Let Y ⊆ SVars (P ). Then πY P , the projection of P to Y , is de-
fined by SVars (πY P ) := Y and πY P (w) := P |Y (w), where P |Y (w) is the
restriction of all µ ∈ P (w) to Y .

Join: Let Vi := SVars (Pi) for i ∈ {1, 2}. Then (P1 ./ P2), the natural join of
P1 and P2, is defined by SVars (P1 ./ P2) := SVars (P1) ∪ SVars (P2) and
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(P1 ./ P2)(w) is the set of all (V1 ∪ V2, w)-tuples µ for which there exist
µ1 ∈ P1(w) and µ2 ∈ P2(w) with µ|V1

(w) = µ1(w) and µ|V2
(w) = µ2(w).

Selection: The k-ary string equality selection operator ζ= is parameterized
by k variables x1, . . . , xk ∈ SVars (P ), written as ζ=x1,...,xk

. The selection

ζ=x1,...,xk
P is defined by SVars

(
ζ=x1,...,xk

P
)

:= SVars (P ) and ζ=x1,...,xk
P (w) is

the set of all µ ∈ P (w) for which wµ(x1) = · · · = wµ(xk).

Take special note that join operates on spans, while selection compares the
subwords of w that are described by the spans. Also observe that P1 ./ P2

is equivalent to the intersection P1 ∩ P2 if SVars (P1) = SVars (P2), and to
the Cartesian product P1 × P2 if SVars (P1) and SVars (P2) are disjoint. If
applicable, we may write ∩ or × instead of ./.

We refer to regex formulas and v-automata as primitive spanner repre-
sentations. A spanner algebra is a finite set of spanner operators. If O is a
spanner algebra and C is a class of primitive spanner representations, then
CO denotes the set of all spanner representations that can be constructed by
(repeated) combination of the symbols for the operators from O with primitive
representations from C. For each spanner representation of the form oρ (or
ρ1 o ρ2), where o ∈ O, we define JoρK = oJρK (and Jρ1 o ρ2K = Jρ1K o Jρ2K).
Furthermore, JCOK is the closure of JCK under the spanner operators in O.

Fagin et al. [13] refer to JRGX{π,ζ
=,∪,./}K as the class of core spanners, as

these capture the core of the functionality of SystemT. Following this, we
define core := {π, ζ=,∪, ./}. This allows us to use more compact notation, like
RGXcore, VAcore

set , VAcore
stk , and VAcore.

3 On v-Automata

This section develops some basic insights on v-automata, which we use in
Section 4 to provide further context for the main result: Section 3.1 introduces
and examines functional v-automata, while Section 3.2 examines the relative
succinctness of different classes of v-automata.

3.1 Functionality and Evaluation of v-Automata

We begin with a short observation on the complexity of the evaluation of
v-automata, namely that even on the empty word, evaluation is hard.

Lemma 3.1 Given A ∈ VA, deciding whether JAK(ε) 6= ∅ is NP-hard.

Proof. We show NP-hardness by reduction from the directed Hamiltonian path
problem (see e. g. Garey and Johnson [21]), which is defined as follows: Given a
directed graph G = (V,E), does G contain a Hamiltonian path? A Hamiltonian
path is a sequence (i1, . . . , in) with n = |V |, i1, . . . , in ∈ V , and (ij , ij+1) ∈ E
for all 1 ≤ j < n, such that for each v ∈ V , there is exactly one j with ij = v.

We begin with the construction for vset-automata. Given a directed graph
G = (V,E), we construct A ∈ VAset such that JAK(ε) 6= ∅ if and only if G
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contains a Hamiltonian path. Assume that V = {1, . . . , n} for some n ≥ 1.
We shall define A with SVars (A) = {x1, . . . , xn}. Let A := (Q, q0, qf , δ), where
Q := {q0, qf} ∪ {qi | 1 ≤ i ≤ n}, and δ is defined as follows:

δ(q0,`xj ) := {qj} for all 0 ≤ i ≤ n,
δ(qi,`xj ) := {qj} for all (i, j) ∈ E,
δ(qi,axj ) := {qf} for all 1 ≤ i ≤ n, 1 ≤ j ≤ n,

δ(qF ,axj ) := {qf} for all 1 ≤ j ≤ n.

The intuition behind the automaton A is as follows: Every state qj corresponds
to the node j of G, and it can only be entered by reading `xj

. Hence, the
reduction represents each edge (i, j) ∈ E as a transition from qi to qj that
is labeled with `xj . Finally, at any point, A can change to the final state by
reading any axj . It then finishes by closing all remaining variables.

Thus, R(A) is the language of words r = `xi1
`xi2
· · · `xik

· c for some k ≥ 1,
where c ∈ {axj

| 1 ≤ j ≤ n}∗, as well as i1, . . . , ik ∈ V and (ij , ij+1) ∈ E for
all 1 ≤ j < k. This means that we can interpret each r ∈ R(A) as a path
(i1, . . . , ik) in G; and for every path, we can construct a corresponding ref-word.

Moreover, if r ∈ Ref(A), then each `xi has to occur exactly once in r,
which means that the path (i1, . . . , ik) is a Hamiltonian path. Likewise, every
Hamiltonian path can be used to construct a word from Ref(A).

As no transition of A is labeled with a letter from Σ, Ref(A) = Ref(A, ε).
Hence, Ref(A, ε) 6= ∅ if and only if G contains a Hamiltonian path. As the
Hamiltonian path problem is NP-complete, this means that deciding emptiness
of Ref(A, ε) is NP-hard. For vstk-automata, we can use the same construction
and replace each axi

with a.

Furthermore, note that for every set of variables V , there exists only one
possible (V, ε)-tuple µ (namely µ(x) = [1, 1〉 for all x ∈ V ). Hence, Lemma 3.1
also establishes the following.

Corollary 3.2 Given A ∈ VA, w ∈ Σ∗, and a (V,w)-tuple µ, deciding whether
µ ∈ JAK(w) is NP-hard.

The proof of Lemma 3.1 uses that the semantics of v-automata ensure that
every variable is opened and closed exactly once (or, in ref-word terminology,
it uses that the semantics are defined only by valid ref-words, instead of the
full ref-language). This raises the question whether these problems become
tractable if we restrict the automata analogously.

Although [13] defines RGX as the set of functional regex formulas, no such
notion is introduced for v-automata. But there is a natural way of defining
this: First, consider that every match of a functional regex formula guarantees
that every variable is assigned exactly once (in contrast to non-functional regex
formulas like x{a}x{a} and x{a} ∨ y{a}, which assign variables twice or not
at all). Using ref-word terminology, this means that Ref(α,w) can be derived
directly from R(α), as this language contains only valid ref-words.
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AN AF

a,`x,ax a

`x

a

ax

a

Fig. 2 Two vset-automata AN and AF , which both define the universal spanner for the
single variable x (cf. [13]) over the alphabet {a}. As R(AN ) contains ref-words like aaxa`x
or a`xa`x, AN is not functional. In contrast to this, AF is functional, as it uses its three
states to ensure that its ref-words contain each of `x and ax exactly once, and in the right
order.

We adapt this notion to v-automata, and call A ∈ VA functional if Ref(A) =
R(A). Figure 2 contains examples for (non-)functional vset-automata (similar
observations can be made for vstk-automata). This definition is also natural
under the semantics as defined in [13]: Translated to these semantics, a v-
automaton A is functional if every path from q0 to qf describes an accepting
run. At the end of Section 2.2.1, we discussed that transformations of regular
expressions into finite automata can be used to transform a regex formula α
into a vset-automaton A with R(A) = R(α). Hence, every functional regex
formula can be transformed into an R-equivalent functional vset-automaton.
Again, analogous observations can be made for vstk-automata.

While v-automata in general have to keep track of the used variables,
functional v-automata store this information implicitly in their states. We
formalize this in the following definition.

Definition 3.3 Let A ∈ VA be functional with A = (Q, q0, qf , δ). For every
q ∈ Q, we define

– a set Oq that contains the variables that have been opened when A is in
state q, and

– if A is a vset-automaton, a set Cq that contains the variables that have
been closed when A is in state q; or,

– if A is a vstk-automaton, a number Nq that is the number of variables that
have been closed when A is in state q.

More formally and using ref-words, we can define these as follows.

Oq := {x ∈ SVars (A) | q ∈ δ∗(q0, r) for some r ∈ (Σ ∪ Γ )∗ with |r|`x = 1},
Cq := {x ∈ SVars (A) | q ∈ δ∗(q0, r) for some r ∈ (Σ ∪ Γ )∗ with |r|ax = 1},
Nq := |r|a, for some r ∈ (Σ ∪ Γ )∗ with q ∈ δ∗(q0, r).

It is an important feature of functional v-automata that any ref-word that
leads from q0 to q can be used to define Oq and Cq (or Oq and Nq).

Lemma 3.4 Let A ∈ VA be functional with A = (Q, q0, qf , δ) and let q ∈ Q.
For all ref-words r1, r2 ∈ (Σ ∪ Γ )∗ with q ∈ δ∗(q0, r1) ∩ δ∗(q0, r2), we have:

1. |r1|`x = |r2|`x for all x ∈ SVars (A), and,
2. if A is a vset-automaton, |r1|ax = |r2|ax for all x ∈ SVars (A), or
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3. if A is a vstk-automaton, |r1|a = |r2|a.

Proof. We only prove the first claim, the others follow analogously. Assume
there exist ref-words r1, r2 ∈ (Σ ∪ Γ )∗ such that |r1|`x 6= |r2|`x for some
x ∈ SVars (A), and there is a state q ∈ δ∗(q0, r1) ∩ δ∗(q0, r2).

Recall that A is trim by definition of VA. Hence, there exist s1, s2 ∈ (Σ∪Γ )∗

with qf ∈ δ∗(q, si). Thus, for all i, j ∈ {1, 2}, we have that (ri · sj) ∈ R(A),
which leads to (ri · sj) ∈ Ref(A), as A is functional.

Therefore, every ri · sj must be valid, which implies |ri · si|`x = 1. As a
consequence, |ri|`x ∈ {0, 1}. Combining this with our initial assumption of
|r1|`x 6= |r2|`x , we conclude that one of the ref-words r1 and r2 contains exactly
one occurrence of `x, while the other ref-word contains no occurrence of `x.
Assume without loss of generality that |r1|`x = 1 and |r2|`x = 0. As r2 · s2 is
valid, the latter implies |s2|`x = 1. Hence, |r1 · s2|`x = 2, which means that
the ref-word r1 · s2 is invalid. Contradiction.

Hence, Lemma 3.4 allows us to compute all Oq and all Cq (or Oq and Nq)
by choosing any ref-word that takes A from q0 to q. This provides us with
the following functionality test that we shall also use as part of an evaluation
algorithm for functional v-automata.

Lemma 3.5 There is an algorithm that, given A ∈ VA with m transitions,
and k variables, decides whether A is functional in time O(km).

If A is functional, the algorithm also computes all Oq and all Cq (if A ∈
VAset) or all Oq and all Nq (if A ∈ VAstk) as defined in Definition 3.3.

Proof. Let A = (Q, q0, qf , δ) be a v-automaton. We first discuss the algorithm
for vset-automata, and then how it can be adapted to vstk-automata.

Algorithm for vset-automata: A pseudo-code representation of this algorithm
can be found in Algorithm 1. We know A is trim by definition of VAset. Hence,
every state can be reached from q0, and qf can be reached from every state.

The algorithm tries to find a state q that violates Lemma 3.4. To do so, it
inductively constructs all Oq and all Cq, while looking for a transition that
causes these sets to be inconsistent.

We start by defining Oq0 := Cq0 := ∅, and declaring all sets Oq and Cq
with q 6= q0 as undefined. In the main loop, the algorithm picks a state p ∈ Q
that has not been picked before and for which Op and Cp are defined. It then
iterates over all transitions from p. For each such transition from p to some
state q ∈ Q with some label λ ∈ (Σ ∪ Γ ∪ {ε}), we know that a functional
automaton must satisfy the following conditions that depend on λ:

– if λ ∈ (Σ ∪ {ε}), then Oq = Op and Cq = Cp must hold,
– if λ = `x, then x /∈ Op, Oq = Op ∪ {x}, and Cq = Cp must hold,
– if λ = ax, then x ∈ Op, x /∈ Cp, Oq = Op, and Cq = Cp ∪ {x} must hold.
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In each case, the conditions describe that the sets for q are correct successors
to the sets for p after using this transition. For the variable transitions, the
conditions also ensure that each variable is opened or closed only once, and
that a variable can only be closed if it has been opened.

If the current transition is a variable transition (i. e., λ ∈ {`x,ax} for some
x ∈ SVars (A)), the algorithm first checks either whether x /∈ Op (if λ = `x),
or whether x ∈ Op and x /∈ Cp (if λ = ax). If this check fails, the algorithm
terminates and declares that A is not functional (as q contradicts Lemma 3.4).

If this check succeeds, or if the transition is not a variable transition, the
algorithm distinguishes two cases:

– If Oq and Cq are undefined, it defines them according to the respective
condition and continues.

– If Oq and Cq are defined, the algorithm checks whether the sets satisfy
the respective condition. If this check fails, the algorithm terminates and
declares that A is not functional (like above, we know that q contradicts
Lemma 3.4). Otherwise, it continues.

If A has not been declared as not functional, the algorithm then proceeds to
the next transition for p (or the next iteration of the main loop).

After the main loop has finished without declaring A as not functional, we
know that all transitions of A result in consistent sets Oq and Cq. Finally, the
algorithm declares A to be functional if and only if Cqf = SVars (A). This is
correct for the following reason: If there is an x ∈ (SVars (A)− Cqf ), we know
that |r|ax = 0 for all r ∈ R(A). Hence, R contains invalid words, which means
that A is not functional.

On the other hand, Cqf = SVars (A) implies Oqf = SVars (A), as the
conditions above ensure that Cq ⊆ Oq for all q ∈ Q. Furthermore, the conditions
also ensure that each variable is opened and closed exactly once. This allows us
to conclude that for all x ∈ SVars (A), every r ∈ R(A) contains each of `x and
ax exactly once, and in the right order. Hence, R(A) = Ref(A), which means
that A is functional, and we can output the sets Oq and Cq for all q ∈ Q.

All that remains is to verify the upper bound on the running time: The
main loop and the included iterations over the transitions touch each of the m
transitions exactly once. For each transition, we can perform the checks on the
sets in time O(k). This yields a total time of O(km).

Algorithm for vstk-automata: This requires only minor modifications: We define
Nq0 := 0, and Nq defaults to undefined for each q 6= q0. The conditions for
transitions from p to q with label λ are as follows:

– if λ ∈ (Σ ∪ {ε}), then Oq = Op and Nq = Np must hold,
– if λ = `x, then x /∈ Op, Oq = Op ∪ {x}, and Nq = Np must hold,
– if λ = a, then |Np| < |Op|, Oq = Op, and Nq = Np + 1 must hold.

The only noteworthy change here is in the last condition: There, we can only
process a if the number of variables that has already been closed is smaller than
the number of variables that has been opened. Apart from that, the algorithm
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Algorithm 1: Functionality test for vset-automata

Input: trim vset-automaton A = (Q, δ, q0, qf ) with variables V
Output: False if A is not functional, True and all sets Oq and Cq if A is functional.

1 Oq0 := ∅;
2 Cq0 := ∅;
3 forall q ∈ Q− {q0} do
4 Oq := undefined;
5 Cq := undefined;

6 Seen := {q0};
7 ToDo := {q0};
8 while ToDo 6= ∅ do
9 choose and remove any q from ToDo;

10 foreach p such that p ∈ δ(q, a) for some a ∈ Σ do
11 if p ∈ Seen then
12 if Op 6= Oq or Cp 6= Cq then return False;
13 else
14 add p to Seen and to ToDo;
15 Op := Oq ;
16 Cp := Cq ;

17 foreach p such that p ∈ δ(q,`x) for some x ∈ V do
18 if x ∈ Oq then return False;
19 if p ∈ Seen then
20 if Op 6= (Oq ∪ {x}) or Cp 6= Cq then return False;
21 else
22 add p to Seen and to ToDo;
23 Op := (Oq ∪ {x});
24 Cp := Cq ;

25 foreach p such that p ∈ δ(q,ax) for some x ∈ V do
26 if x /∈ Oq or x ∈ Cq then return False;
27 if p ∈ Seen then
28 if Op 6= Oq or Cp 6= (Cq ∪ {x}) then return False;
29 else
30 add p to Seen and to ToDo;
31 Op := Oq ;
32 Cp := (Cq ∪ {x});

33 if Cqf 6= V then

34 return False

35 else
36 return True and all sets Oq and Cq

proceeds as for vset-automata, with the final check whether |Nqf | = |SVars (A)|.
Analogously to the vset-case, this holds only if Oqf = SVars (A).

Recall that we showed in Lemma 3.1 and Corollary 3.2 suggest that evalua-
tion of v-automata in general is NP-hard. But for functional v-automata, we
can use the information that is encoded in the Oq and Cq (or Oq and Nq) for
an efficient evaluation algorithm. In other words, non-functionality is the only
source of intractability for v-automata evaluation.
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Lemma 3.6 Given w ∈ Σ∗, a functional A ∈ VA, and a (SVars (A), w)-tuple µ,
we can decide in polynomial time whether µ ∈ JAK(w).

Proof. We first show the vset-automata case; the construction for vstk-automata
only requires some minor modifications and is given at the end of the proof.
Let A = (Q, q0, qf , δ) be a functional vset-automaton. Now, we need to keep
in mind that, for every w ∈ Σ∗, multiple ref-words r can define the same
(SVars (A), w)-tuple µr. For example, if µ(x) = µ(y), the corresponding ref-
word can contain e. g. `x`yaxay or `yay`xax (or any other arrangement that
opens and closes each variable in the right order). To deal with this partial
commutativity, we represent µ as a sequences of words w0, . . . , wn ∈ Σ∗ and
sequence of sets M1, . . . ,Mn ⊆ Γ for some n ≥ 0 such that the following holds:

1. w = w0w1 · · ·wn,
2. wi 6= ε for 0 < i < n,
3. the sets M1, . . . ,Mn are non-empty and pairwise disjoint,
4.
⋃n
i=1Mi = {`x,ax | x ∈ SVars (A)},

5. µ(x) = [o, c〉 if and only if there exist 1 ≤ i ≤ j ≤ n with `x ∈Mi, ax ∈Mj ,
o = |w0 · · ·wi−1|+ 1, and c = |w0 · · ·wj−1|+ 1.

Intuitively, the combined sequence w0,M1, w1, . . . ,Mn, wn describes how A
has to match µ to w, where successive variable transitions are considered
commutative. The words wi describe the how A consumes the input, and the
sets Mi describe how A acts on variables. Hence, the sequence captures how A
alternates between both types of behavior.

As a consequence, if r ∈ (Σ ∪ Γ )∗ with µr = µ, then for every Mi,
the symbols in Mi can be arranged into a word vi ∈ Γ+ such that r =
w0(v1w1) · · · (vnwn). As we require wi 6= ε and Si 6= ∅, every pair µ and w
defines a unique pair of sequences w0, . . . , wn and M1, . . . ,M`.

We now simulate all possible r with µr = µ using a generalization of the
on-the-fly computation of the powerset construction (for the simulation of
NFAs with DFAs). More specifically, the algorithm shall construct a sequence
of sets S0, T1, S1, . . . , Tn, Sn ⊆ Q, where each Si describes the states that A can
have after processing w0, (M1, w1), . . . , (Mi, wi), while Ti describes the states
that can be reached by processing (w0,M1), . . . , (wi−1,Mi).

In order to ensure that the Ti are computed correctly, we also define

Oi :=

i⋃
j=1

{x | `x ∈Mj}, Ci :=

i⋃
j=1

{x | ax ∈Mj}

for all 1 ≤ i ≤ `, as well as O0 := C0 := ∅. Intuitively, Oi and Ci shall
represent the sets Oq and Cq for any q that can be reached after processing
w0(M1w1) · · · (Miwi). This necessarily results in On = Cn = SVars (A).

We now define S0 := δ∗(q0, w0). The algorithm then iterates the following
loop for i from 1 to n:

1. Let Ti be the set of all states q ∈ Q such that
(a) Oq = Oi and Cq = Ci, and
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(b) there exists a state p ∈ Si−1 such that q can be reached from p using
only ε-transitions and variable-transitions.

2. Let Si :=
⋃
p∈Ti

δ∗(p, wi).

After computing Sn, we only need to check whether qf ∈ Sn. This holds if and
only if there is an r ∈ R(A) with µr = µ. Hence, we can decide µ ∈ JAK(w);
and this is clearly possible in polynomial time (recall that due to Lemma 3.5,
we can precompute the sets Oq and Cq for all q ∈ Q in polynomial time).

vstk-automata: For vstk-automata, instead of storing different ax in the sets
Mi, and using these to compute Ci for every step i, we compute sets Ni that
determine how many variables have been closed.

We also have to refine the computation of the Ti to account for a special
case of opening variables: Due to the stack behavior, we can encounter cases
where two variables are opened in the same Mi, but closed at different times.
Those variables are not commutative within Mi. Hence, we define the partial
order ≺µ on SVars (A) such that x ≺µ y if µ(x) = [k,m〉 and µ(y) = [k, n〉 with
m < n. In addition to the criteria that hold for vset-automata, the reachability
analysis that computes Ti now may only use transitions from some state p′ to
some state q′ with label `y if x ∈ Op′ for all x ≺µ y.

Apart from that, we proceed analogously to the vset-construction by process-
ing the wi as in the simulation of an NFA, and the sets Mi with a reachability
analysis, where the sets Oi and Ni determine which states are viable destina-
tions. Clearly, ≺µ can be computed in polynomial time from µ.

This approach was used by Freydenberger, Kimelfeld, and Peterfreund [17]
to develop a polynomial delay algorithm for regular spanners.

3.2 Relative Succinctness of v-Automata

Our next goal is to compare the succinctness of functional and general v-
automata, as well as that of vstk- and vset-automata. To this end, we introduce
a lemma that allows us to treat certain v-automata as NFAs that accept
ref-words. Note that the result applies regardless of whether the ref-words close
variables by name with ax or by stack with a. But as a convention, we shall
only apply the following lemma to two ref-words if either both of them close
variables by name or both of them close variables by stack.

Lemma 3.7 For a finite V ⊂ Ξ, consider any valid r ∈ (Σ∪ΓV )∗ that contains
no subword from Γ 2

V . Then for every valid r̂ ∈ (Σ ∪ ΓV )∗ with clr(r̂) = clr(r)
that closes variables in the same way as r, we have that µr̂ = µr implies r̂ = r.

Proof. Every valid r ∈ (Σ ∪ ΓV )∗ that contains no subword from Γ 2
V has a

unique factorization r = w0(v1w1) · · · (v2kw2k) with vi ∈ ΓV , w0, w2k ∈ Σ∗,
and w1, . . . , w2k−1 ∈ Σ+. Hence, for all x ∈ V and [ix, jx〉 := µr(x), we have
ix 6= jx; and for all y ∈ (V − {x}) and [iy, jy〉 := µr(y), we know ix, jx, iy, jy
are pairwise distinct.
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Now assume that there is a valid r̂ ∈ (Σ ∪ ΓV )∗ with clr(r̂) = clr(r) and
µr̂ = µr. We first observe that r̂ contains no factor from Γ 2

V . Otherwise,
we would have µr̂ 6= µr, as there would be some x ∈ V where ix̂ = jx̂ for
[ix̂, jx̂〉 := µr̂(x), or there is some y ∈ (V − {x}) such that ix̂, jx̂, iŷ, jŷ are not
pairwise distinct for [iŷ, jŷ〉 := µr̂(y).

Thus, r̂ can be factorized into r̂ = ŵ0(v̂1ŵ1) · · · (v̂2kŵ2k), analogously to r.
By comparing the factorizations of r and r̂ from left to right, we observe that
ŵi = wi and v̂j = vj has to hold for all i and j. Otherwise, we would obtain a
contradiction to µr̂ = µr or clr(r̂) = clr(r). We conclude r̂ = r.

Lemma 3.7 provides us with a sufficient criterion for ref-words r that
uniquely define µr. This allows us to identify v-automata that can be treated
as NFAs. In particular, we shall use the following result by Birget [4] (although
the proof in [4] refers only to NFAs without ε-transitions, it directly generalizes
to those with ε-transitions).

Lemma 3.8 (Birget [4]) Let L be a regular language. Assume there exist
pairs of words (u1, v1), . . . , (un, vn) such that

1. uivi ∈ L for 1 ≤ i ≤ n, and
2. uivj /∈ L or ujvi /∈ L for all 1 ≤ i < j ≤ n.

Then any NFA accepting L must have at least n states.

Now we are ready to compare functional and general v-automaton. The
author considers it no surprise that standard automata techniques allow us
to transform every vset- or vstk-automaton into an equivalent functional v-
automaton of the same type; but this may result in an exponential number of
states. While combining Lemma 3.1 with Lemma 3.6 already suggests that this
conversion is not possible in polynomial time (unless the number of variables
is bounded, or P = NP), we also show matching exponential size bounds.

Proposition 3.9 Let fset(k) := 3k, fstk(k) := (k + 2)2k−1, and s ∈ {set, stk}.
For every A ∈ VAs with n states and k variables, there exists an equivalent
functional Afun ∈ VAs with n · fs(k) states. For every k ≥ 1, there is an
Ak ∈ VAs with one state and k variables, such that every equivalent functional
Afun ∈ VAs has at least fs(k) states.

Proof. This proof is organized as follows: We first discuss vset-automata, then
vstk-automata. For each of these, we first discuss upper and then lower bounds.

Upper bound for vset-automata: Consider a vset-automaton A = (Q, q0, qf , δ)
with k ≥ 1 variables. Our goal is to construct a functional vset-automaton
Afun with 3k|Q| states and JAfunK = JAK. The main idea is to intersect A with
a functional vset-automaton that keeps track of the sets Oq and Cq for all
q ∈ Q (Definition 3.3). Formally, we associate each state of Afun with a function
s : SVars (A)→ {w, o, c}, where s(x) represents the following:

– w stands for “waiting”, meaning `x has not been read,
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– o stands for “open”, meaning `x has been read, but not ax,
– c stands for “closed”, meaning `x and ax have been read.

Let S be the set of all such functions. Observe that |S| = 3k. We now define
Afun := (Qfun, q

fun
0 , qfun

f , δfun) in the following way:

– Qfun := Q× S,
– qfun

0 := (q0, s0), where s0 is defined by s0(x) = w for all x ∈ SVars (A),
– qfun

f := (qf , sf ), where sf is defined by sf (x) = c for all x ∈ SVars (A),
– δfun((p, s), a) := {(q, s) | q ∈ δ(p, a)} for a ∈ (Σ ∪ {ε}) and (p, s) ∈ Qfun,
– for all (p, s) ∈ Qfun and all x ∈ SVars (A), let

δfun((p, s),`x) :=

{
∅ if s(x) 6= w,

{(q, to) | q ∈ δ(p,`x)} if s(x) = w,

δfun((p, s),ax) :=

{
∅ if s(x) 6= o,

{(q, tc) | q ∈ δ(p,ax)} if s(x) = o,

where to is defined by t(x) := o and to(y) := s(y) for all y 6= x, and tc is
defined by tc(x) := c and tc(y) := s(y) for all y 6= x.

In order to see that Afun is correct and functional, note that it simulates A,
while the definition of δfun ensures that in each state (q, s), each variable x can
only be opened if s(x) = w, and only be closed if s(x) = o. The initial state
(q0, s0) and the final state (qf , sf ) ensure that every variable is opened and
closed exactly once. Finally, as Afun has exactly 3k|Q| states, this proves the
upper bound for vset-automata.

Lower bound for vset-automata: Let a ∈ Σ, k ≥ 1, and Xk := {x1, . . . , xk} ⊂ Ξ.
We define the following vset-automaton Ak with variables Xk:

a,
`x1

, . . . ,`xk
,

ax1
, . . . ,axk

In the terminology of [13], Ak defines the universal spanner over {a} with
variables Xk. Recall the set S of all functions s : Xk → {w, o, c}, which we
already used for the upper bound above. For every s ∈ S, we define ref-words
us := us1 · · ·usk and vs := vs1 · · · vsk, where the words usi and vsi are defined as
follows for every i, 1 ≤ i ≤ k:

usi :=


ε if s(xi) = w,

`xia if s(xi) = o,

`xi
aaxi

a if s(xi) = c

vsi :=


`xiaaxia if s(xi) = w,

axia if s(xi) = o,

ε if s(xi) = c

Now observe that us ·vs ∈ Ref(Ak) for each s ∈ S. Furthermore, us ·vs does not
contain any subword from Γ 2. Hence, according to Lemma 3.7, usvs ∈ Ref(A)
must hold for every vset-automaton A with JAK = JAkK.
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Let A ∈ VAset be functional with JAK = JAkK. As A is functional, Ref(A) =
R(A), which implies us · vs ∈ R(A) for all s ∈ S. Furthermore, for all s, t ∈ S
with s 6= t, we have that us · vt /∈ R(A) must hold, as us · vt is not a valid
ref-word. In order to see this, consider an xi with s(xi) 6= t(xi). As each `xi

and axi
occurs only in usi and vti , the ref-word us · vt cannot contain both of

`xi
and axi

exactly once.
This allows us to use Lemma 3.8: For each s ∈ S, we observe us · vs ∈ R(A)

and us · vt /∈ R(A) for all t ∈ S with t 6= s. Hence, A has at least |S| = 3k

states. As A was chosen freely among functional vset-automata, this proves
the claimed lower bound.

Upper bound for vstk-automata: Assume A = (Q, q0, qf , δ) is a vstk-automaton
with k ≥ 1 variables. Our goal is to construct a functional vstk-automaton
Afun with (k + 2)2k−1|Q| states and JAfunK = JAK. On a conceptual level, the
construction is very similar to the vset-automata construction above. The
only difference is what information on the variables is stored in the states. For
vstk-automata, we store which variables have been opened (to ensure that every
variable is opened exactly once), and how many variables have been closed (to
ensure that every variable is closed at least once, and to prevent processing a
when no variables can be closed). We now define Afun := (Qfun, q

fun
0 , qfun

f , δfun)
in the following way:

– Qfun := {(q,O, i) | q ∈ Q,O ⊆ SVars (A), 0 ≤ i ≤ |O|},
– qfun

0 := (q0, ∅, 0),
– qfun

f := (qf ,SVars (A), k),
– δfun((p,O, i), a) := {(q,O, i) | q ∈ δ(p, a)} for a ∈ (Σ ∪ {ε}) and (p,O, i) ∈
Qfun,

– for all (p,O, i) ∈ Qfun and all x ∈ SVars (A), let

δfun((p,O, i),`x) :=

{
∅ if x ∈ O,

{(q,O ∪ {x}, i) | q ∈ δ(p,`x)} if x /∈ O,

δfun((p,O, i),a) :=

{
∅ if i ≥ |O|,
{(q,O, i+ 1) | q ∈ δ(p,a)} if i < |O|

It is now easy to see that Afun simulates A. In addition to this, the definition of
δfun ensures that variables are only opened if they have not been opened before
(as `x can only be precessed if x /∈ O), and that variables can only be closed
if there are sufficiently many open variables (as a can only be processed if
i < |O|). Furthermore, Afun accepts only if every variable has been opened, and
if k variables have been closed. Hence, Afun is functional and equivalent to A.
All that remains for this upper bound is to prove that |Qfun| = (k + 2)2k−1|Q|.
First, note that in the definition of Qfun, each state of Q is paired with an
element of the set M := {(O, i) | O ⊆ SVars (A), 0 ≤ i ≤ |O|}. We observe that

|M | =
∑k
j=0

(
k
j

)
(j + 1), as there are

(
k
j

)
possible sets O with |O| = j; and for

each such set, we have (j + 1) choices for i. By simplifying this formula (e. g.
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using ones favorite software), we obtain |M | = (k+ 2)2k−1. As |Qfun| = |M ||Q|,
this concludes the proof of the upper bound.

Lower bound for vstk-automata: Again, this proof is similar to the vstk-case.
Let a ∈ Σ, k ≥ 1, and Xk := {x1, . . . , xk} ⊂ Ξ. We define the following
vset-automaton Ak with variables Xk:

a,
`x1

, . . . ,`xk
,

a

In the terminology of [13], Ak defines the universal hierarchical spanner over
{a} with variables Xk. Again, we want to define a sequence of pairs of ref-words
that allows us to use Lemma 3.8. Recall the set M := {(O, i) | O ⊆ Xk, i ≤ |O|}
that we already used in the proof for the upper bound. For each (O, i) ∈M ,
we define ref-words uO,i := uO1 · · ·uOk (aa)i and vO,i := vO1 · · · vOk (aa)k−i by

uOj :=

{
`xj

a if xj ∈ O,
ε if xj /∈ O

vOj :=

{
ε if xj ∈ O,
`xj

a if xj /∈ O

for all j with 1 ≤ j ≤ k. First, observe that uO,i · vO,i ∈ Ref(Ak) holds for all
(O, i) ∈ M . Assume that A is a functional vstk-automaton with JAK = JAkK.
As Lemma 3.7 applies, we know that uO,i ·vO,i ∈ R(A) holds for all (O, i) ∈M .
Next, consider (O, i), (O′, i′) ∈M with (O, i) 6= (O′, i′) and let r := uO,i · vO′,i′ .
Then r /∈ R(A) must hold: If i 6= i′, then r contains too many or too few
occurrences of a. If O 6= O′, then a variable x is opened more than once (if
x ∈ O and x /∈ O′) or less than once (if x /∈ O and x ∈ O′). In each of these
cases, r is not valid, which contradicts our assumption that A is functional.
Hence, we can apply Lemma 3.8, and conclude that A has at least |M | states.
As we established in the proof of the upper bound, |M | = (k + 2)2k−1.

We also briefly compare vset- and vstk-automata: It was shown in [13]
that JVAstkK ⊂ JVAsetK. This inclusion is proper for the following reason: As
vstk-automata always close the variable that was opened most recently, they
can only express hierarchical spanners (a spanner is hierarchical if it contains
only w-tuples with non-overlapping spans; for a formal definition, see [13]).
While this behavior can be simulated with vset-automata, a slight modification
of the proof of Proposition 3.9 shows that this causes an exponential blowup.

Proposition 3.10 For every k ≥ 1, there is a vstk-automaton Ak with one
state and k variables, such that every vset-automaton A with JAK = JAkK has
at least k! states.

Proof. Let a ∈ Σ, k ≥ 1, and Xk := {x1, . . . , xk} ⊂ Ξ. We use the same
vstk-automaton Ak as in the proof of the lower bound for vstk-automata in
Proposition 3.9. We now focus on the following subset of Ref(Ak):

Rk :=
{

(`xp(1)
a) · · · (`xp(k)

a)(aa)k | p ∈ Perm(k)
}
,
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where Perm(k) is the set of all permutations of {1, . . . , k}. Translating these
ref-words to ref-words that use explicit closing commands, we obtain the
language

R′k :=
{

(`xp(1)
a) · · · (`xp(k)

a)(axp(k)
a) · · · (axp(1)

a) | p ∈ Perm(k)
}
.

As R′k makes the closing of variables explicit, we can state that for every

r ∈ Rk, there is an r′ ∈ R′k with µr = µr
′
, and vice versa. Hence, for every

vset-automaton A with JAK = JAkK, Lemma 3.7 implies that R′k ⊆ R(A). For
every permutation p ∈ Perm(k), we now define

up := (`xp(1)
a) · · · (`xp(k)

a), vp := (axp(k)
a) · · · (axp(1)

a).

Then upvp ∈ R′k holds for every p ∈ Perm(k), which implies upvp ∈ R(A).
Next, consider any p, q ∈ Perm(k) with p 6= q, and let r := upvq. Choose the
largest i for which p(i) 6= q(i). As p(j) = q(j) for all j > i, the ref-words vp and
vq have the common prefix axp(k)

a · · · axp(i+1)
a, and the leftmost letters where

the two ref-words disagree are axp(i)
and axq(i)

(in vp and in vq, respectively).
In up, the variable xp(i) is opened after xq(i) is opened – hence, it is closed
in vp before xq(i) is closed. But in vq, the variable xq(i) is closed before xp(i),
which means that while upvq is a valid ref-word, it defines an Xk-tuple that is
not hierarchical, which means that it cannot correspond to any ref-word that
is defined by a vstk-automaton (in particular not by Ak). Hence, as A and
Ak are equivalent, upvq /∈ Ref(A) must hold. By Lemma 3.8, A has at least
|Perm(k)| = k! states.

To obtain an exponential upper bound, one can construct a vset-automaton
that stores a set of variables that have been opened, and a stack of variables
that are currently open.

While the proof of Proposition 3.10 uses non-functional vstk-automata, we
can observe a lower bound for functional vstk-automata that is not k!, but still
exponential in k.

Proposition 3.11 For every k ≥ 1, there is a functional vstk-automaton
Ak with 5k states and 2k variables, such that every vset-automaton A with
JAK = JAkK has at least 2k states.

Proof. Let a ∈ Σ and k ≥ 1. We define the functional vstk-automaton Ak with
variables {x1, y1 . . . , xk, yk} ⊂ Ξ as follows:

· · · · · ·

a a a a a a a a

a

a

a

a

a

a

`x1

`y1

`y1

`x1

`x2

`y2

`y2

`x2

`xk

`yk

`yk

`xk a a

2k a-transitions
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Observe that Ak has 5k + 1 states: the starting state, 3k states that handle
opening the variables, and 2k states that handle closing the variables. Intuitively,
for each pair xi and yi of variables, Ak chooses whether it opens first xi and
then yi, or vice versa. As there are k such pairs of variables, there are 2k

different combinations of choices.
Building on this, the proof proceeds analogously to that of Proposition 3.10:

We can restrict our considerations to those ref-words where exactly one a is
read after each variable operation, which allows us to use Lemma 3.7. For each
of the 2k combinations of choices, we can define a pair (ui, vj) of ref-words for
vstk-automata, where ui corresponds to opening the variables and vi to closing
them. We then invoke Lemma 3.8 to conclude that every vset-automaton that
is equivalent to Ak needs to have at least 2k states.

In contrast to Proposition 3.10, these functional vstk-automata have more
than a single state. This is to be expected, as it is easily seen that a functional
vstk-automaton with k variables needs to have at least 2k + 1 states (it needs
at least 2k transitions for the variable operations, each of which has to lead a
new state in order to guarantee functionality).

We conclude that although vstk-automata can express less than vset-
automata, they may offer an exponential succinctness advantage; and this
advantage is orthogonal to the advantage of non-functional over functional
automata. We revisit these succinctness issues in Section 4.

4 SpLog: A Logic for Spanners

In this section, we introduce SpLog as a fragment of ECreg and connect it to core
spanners. Section 4.1 discusses the definitions and the main result; Section 4.2
contains the proof of the main result.

4.1 The Logic

As shown by Freydenberger and Holldack [16], every element of RGXcore can
be converted into an ECreg-formula, and every word equation with regular
constraints can be converted to RGXcore (and so can every ECreg-formula; see
the comments after Example 2.1). While conversion from word equations
or ECreg results in a spanner that is satisfiable if and only if the formula is
satisfiable, the input word of the spanner needs to encode the whole word
equation. Hence, the spanner can only simulate satisfiability, but not evaluation.
Moreover, this construction can lead to an exponential blowup. To overcome
these problems, we introduce SpLog (short for spanner logic), a fragment of
ECreg that directly corresponds to core spanners.

Definition 4.1 A formula ϕ ∈ EC is safe if the following conditions are met:

1. If (ϕ1 ∨ ϕ2) is a subformula of ϕ, then free(ϕ1) = free(ϕ2).
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2. Every constraint CA(x) occurs only as part of a subformula (ψ ∧ CA(x)),
with x ∈ free(ψ).

Let W ∈ Ξ. Then SpLog(W), the set of all SpLog-formulas with main variable
W, is the set of all safe ϕ ∈ ECreg such that

1. all word equations in ϕ are of the form W = ηR, with ηR ∈ ((Ξ−{W})∪Σ)∗,
2. for every subformula ψ of ϕ, W ∈ free(ψ).

We also define the set of all SpLog-formulas by SpLog :=
⋃
W∈Ξ SpLog(W),

and we use SpLogrx to denote the fragment of SpLog that exclusively defines
constraints with regular expressions instead of NFAs.

Less formally, for every ϕ ∈ SpLog(W), the main variable W appears on
the left side of every equation (and is never bound with a quantifier). The
requirement that ϕ is safe ensures that each variable corresponds to a subword
of W. When declaring the free variables of a SpLog-formula, we slightly diverge
from our convention for ECreg-formulas, and write ϕ(W;x1, . . . , xk) to denote a
formula with main variable W, and free(ϕ) = {W, x1, . . . , xk}. To account for
the special role of the main variable, we also use JϕK(w) to denote the set of
all σ ∈ JϕK that satisfy σ(W) = w.

Definition 4.1 can be seen as restricting the definition of ECreg. For some
purposes, in particular when extending SpLog as we shall do in Section 8,
it is more convenient to deal with a recursive definition. Hence, before we
consider some example formulas, we introduce the following recursive definition
of SpLog, which is equivalent to Definition 4.1.

Definition 4.2 Let W ∈ Ξ. Then SpLog(W), the set of all SpLog-formulas
with main variable W, is the subset of ECreg that is obtained from the following
recursive rules.

B1. (W = ηR) ∈ SpLog(W) for every ηR ∈ ((Ξ − {W}) ∪Σ)∗.

R1. If ϕ1, ϕ2 ∈ SpLog(W), then (ϕ1 ∧ ϕ2) ∈ SpLog(W).
R2. If ϕ1, ϕ2 ∈ SpLog(W) and free(ϕ1) = free(ϕ2), then (ϕ1 ∨ϕ2) ∈ SpLog(W).
R3. If ϕ ∈ SpLog(W) and x ∈ free(ϕ)− {W}, then (∃x : ϕ) ∈ SpLog(W).
R4. If ϕ ∈ SpLog(W) and x ∈ free(ϕ), then (ϕ ∧ CA(x)) ∈ SpLog(W) for every

NFA or regular expression A.

Example 4.3 Define ϕ1(W;x) := ∃y : W = xy∧CΣ+(x). Then ϕ1 is a SpLog(W)-
formula, and σ |= ϕ1 if and only if σ(x) as a non-empty prefix of σ(W).

In contrast to this, ϕ2(W;x, y) := (W = xx ∨W = yyy) is not a SpLog-
formula, as it is not safe. Intuitively, if for example σ(W) = σ(x)2, then σ |= ϕ2,
even if σ(y) 6v σ(W).

Now define SpLog-formulas

ϕ3(W;x, y) :=
(
∃x1, x2 : W = x1xx2

)
∧
(
∃y1, y2 : W = y1yy2

)
,

ϕ4(W;x, y) :=∃z1, z2, z3 :
(
W = z1xz2yz3 ∨W = z1yz2xz3

)
.

Then σ |= ϕ3 if and only if σ(W) contains an occurrence of σ(x) and one of σ(y);
and σ |= ϕ4 holds if and only if σ(W) contains an occurrence of σ(x) and one
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of σ(y) that do not overlap. For example, if σ(W) = banana, σ(x) = ban, and
σ(y) = nana, then σ |= ϕ3, but not σ |= ϕ4. Next, we define the SpLog-formula

ϕ5(W;x, y) := ∃z1, z2, z3 :(
W = z1xz2yz3 ∧ Cα≥5

(z2)
)
∨
(
W = z1yz2xz3 ∧ Cα≤7

(z2)
)
,

where α≥5 and α≤7 are regular expressions with L(α≥5) = {w ∈ Σ∗ | |w| ≥ 5}
and L(α≤7) = {w ∈ Σ∗ | |w| ≤ 7}. Then σ |= ϕ5 if and only if

1. σ(W) contains an occurrence of σ(x) to the left of an occurrence of σ(y)
with at least five terminals between them, or

2. σ(W) contains an occurrence of σ(y) to the left of an occurrence of σ(x)
with at most seven terminals between them. �

For more examples, see Example 4.5 below and Section 5, which also
contains notational shorthands that simplify writing SpLog-formulas.

Before we examine conversions between SpLog and various representations
of core spanners, we introduce a result that provides us with a convenient
shorthand notation.

Lemma 4.4 Let ϕ ∈ SpLog(W), x ∈ free(ϕ)− {W}, and ψ ∈ SpLog(x) such
that W does not occur in ψ. We can compute in polynomial time χ ∈ SpLog(W)
with χ ≡ (ϕ ∧ ψ).

Proof. Let x1, x2 be new variables and define

χ := ϕ ∧ ∃x1, x2 :
(
(W = x1 · x · x2) ∧ ψ̂

)
,

where ψ̂ is obtained from ψ by replacing every equation x = ηR with W =
x1 · ηR · x2. Given W = x1 · x · x2, these equations define the same relations as
the x = ηR. Then χ ≡ (ϕ ∧ ψ) holds.

This allows us to combine SpLog-formulas with different main variables.

Example 4.5 First, note that σ(x) |= ψ1 holds for the EC-formula ψ1(x, y) :=
∃u, v :

(
x = uv ∧ y = vu

)
if and only if σ(x) is a cyclic permutation of y

(and vice versa). For example, this holds if σ(x) = owl and σ(y) = low, or if
σ(x) = headgear and σ(y) = gearhead.

Now assume that we want to extend the formula ϕ4(W;x, y) from Exam-
ple 4.3 with the additional requirement that x is a cyclic permutation of y. We
could do this directly using the following formula:

ψ2(W;x, y) := ∃z1, z2, z3 :
(
W = z1xz2yz3 ∨W = z1yz2xz3

)
∧ ∃u, v :

((
∃z4, z5 : W = z4xz5 ∧W = z4uvz5

)
∧
(
∃z6, z7 : W = z6yz7 ∧W = z6vuz7

))
.
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Using Lemma 4.4, we can express this using the following simplified notation:

ψ3(W;x, y) := ∃z1, z2, z3 :(
W = z1xz2yz3 ∨W = z1yz2xz3

)
∧ ∃u, v :

(
x = uv ∧ y = vu

)
,

where we treat x and y as main variables of subformulas. �

When comparing the expressive power of spanners and SpLog, we need to
address one important difference of the two models: While SpLog is defined
on words, spanners are defined on spans of an input word. Apart from slight
modifications to adapt it to SpLog, the following definition for the conversion
of spanners to formulas was introduced in [16].

Definition 4.6 Let P be a spanner and let ϕ ∈ SpLog(W) with free(ϕ) =
{W} ∪ {xP , xC | x ∈ SVars (P )}. We say that ϕ realizes P if, for all w ∈ Σ∗,
we have σ ∈ JϕK(w) if and only if µ ∈ P (w) where, for each x ∈ SVars (P ) and
[i, j〉 := µ(x), both σ(xP ) = w[1,i〉 and σ(xC) = w[i,j〉.

The intuition behind this definition is that every span [i, j〉 of w is uniquely
identified by its content w[i,j〉, and by w[1,i〉, the prefix of w that precedes the
span. Hence, we represent every variable x of the spanner with two variables
xC and xP , which store the content and the prefix, respectively. Moreover,
the main variable of the SpLog-formula corresponds to the input word of the
spanner. Next, we consider conversions in the other direction.

Definition 4.7 Let ϕ ∈ SpLog(W). A spanner P with SVars (P ) = free(ϕ)−
{W} realizes ϕ if, for all w ∈ Σ∗, we have σ ∈ JϕK(w) if and only if there exists
some µ ∈ P (w) with wµ(x) = σ(x) for all x ∈ SVars (P ).

Again, the main variable of the SpLog-formula corresponds to the input
word of the spanner. Note that it is possible to define realizability in a stricter
way: Instead of requiring that µ ∈ P (w) holds for one µ with wµ(x) = σ(x) for
all x ∈ SVars (P ), we could require µ ∈ P (w) for all such µ. But such a spanner
can directly be constructed from a spanner P that satisfies Definition 4.7,
by joining P with a universal spanner (cf. [13]), and using string equality
selections (for our purposes, this does not affect the complexity, as this paper
only considers spanners that allow string equality relations – see the proof of
Lemma 8.3 for a use of this construction).

Let C1 be a class of spanner representations (or SpLog-formulas), and let
C2 be a class of SpLog-formulas (or spanner representations). A polynomial size
conversion from C1 to C2 is an algorithm that, given some ρ1 ∈ C1, computes
some ρ2 ∈ C2 such that ρ2 realizes ρ1, and the size of ρ2 is polynomial in the
size of ρ1. If the algorithm also works in polynomial time, we say that there is
a polynomial time conversion. First, we use Lemma 3.1 to obtain a negative
result on conversions of v-automata to SpLog.

Lemma 4.8 P = NP, if there is a polynomial time conversion from VAset or
VAstk to SpLog.
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Proof. We show this by reduction from the problem of checking whether
JAK(ε) 6= ∅, which is NP-hard according to Lemma 3.1. Let A ∈ VA, and
assume that we can construct in polynomial time a formula ϕ ∈ SpLog(W) that
realizes A. Then JAK(ε) 6= ∅ holds if and only if there is a substitution σ ∈ JϕK(ε).
As σ maps every variable in ϕ to a subword of σ(W) = ε, we have σ(x) = ε
for all x ∈ free(ϕ). The same applies to all variables that are introduced
with existential quantifiers. Hence, σ |= ϕ if and only if σε |= ϕ, where the
substitution σε is defined by σε(x) := ε for all x ∈ Ξ.

Whether this holds can be easily verified by rewriting ϕ into a Boolean
expression over 1 and 0: Every equation W = ηR is replaced with 1 if σε(ηR) = ε,
and with 0 if σε(ηR) 6= ε. Likewise, every constraint CAC

(x) is replaced with 1
if ε ∈ L(AC), and 0 if ε /∈ L(AC) (as AC is an NFA, this can be checked in
polynomial time). Finally, all existential quantifiers are removed. This results
in a Boolean expression (consisting of 0, 1, ∧ and ∨), which we just need to
evaluate. If the result is 1, we know that JAK(ε) 6= ∅; if it is 0, JAK(ε) = ∅ holds.

All this is possible in polynomial time. Hence, if a polynomial time conversion
from VAset or VAstk to SpLog exists, P = NP follows.

This result is less negative than it might appear at the first glance, as it
relies on very specific circumstances. More specifically, it requires a combination
of the fact that deciding JAK(ε) 6= ∅ is NP-hard (Lemma 3.1) for non-functional
v-automata with the observation that SpLog-formulas can be evaluated trivially
on input ε.

We can avoid these circumstances with a very minor relaxation of the
definition of polynomial time conversions: We say that a SpLog-formula ϕ
realizes a spanner P modulo ε if ϕ realizes a spanner P̂ with P (w) = P̂ (w)
for all w ∈ Σ+. In other words, ϕ realizes P on all inputs, except ε (where
the behavior is undefined). Likewise, a polynomial time conversion modulo
ε computes formulas that realize the spanners modulo ε. We now state the
central result of this paper.

Theorem 4.9 There are polynomial time conversions

1. from RGXcore to SpLogrx, and from SpLogrx to RGXcore,
2. from SpLog to VAcore

set and to VAcore
stk ,

3. modulo ε from VAcore to SpLog.

Within the framework of spanners realizing SpLog-formulas (and vice versa),
this establishes that core spanners and SpLog have the same expressive power.
As the proof of this result is quite lengthy, we first discuss some of its im-
plications. The actual proof can then be found in Section 4.2 (note that the
conversion from RGXcore to SpLog was basically proven in [16], only minor
modifications are required).

Recall that SpLogrx is the fragment of SpLog that uses only regular expres-
sions to define constraints. The conversion from RGXcore to SpLogrx is almost
identical to the conversion from RGXcore to ECreg that was presented in [16].
The most technically challenging part is the conversion of non-functional v-
automata to SpLog, which requires a gadget that acts as a synchronization
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mechanism inside the formula. It uses sets of variables that map to either ε
or the first letter of W, which is the main reason that the construction only
works modulo ε. Generally, P (ε) can be considered a pathological edge case:
As P (w) can be understood as search in w, P (ε) corresponds to a search in
the empty word (arguably not a particularly interesting text to search).

But even if we insist on this case, we are still able to observe conversions that
might not run in polynomial time, but produce a formula of polynomial size.
Furthermore, this is only an issue when dealing with non-functional v-automata;
for functional v-automate, we can handle this special case in polynomial time.

Corollary 4.10 There are polynomial size conversions from VAcore to SpLog.
These conversions run in polynomial time if all v-automata in the spanner
representation are functional.

Proof. The polynomial time conversions modulo ε from Theorem 4.9 also imply
a polynomial upper bound on the size of the computed representations. For
the conversion of v-automata to SpLog-formulas, this size bound also holds if
we omit the modulo ε, as for every A ∈ VA, there are only two possible cases:
Either JAK(ε) = ∅, or JAK(ε) = µ, where µ(x) = [1, 1〉 for all x ∈ SVars (A). In
the latter case, we add this special case to the constructed formula.

If we consider only functional v-automata, Lemma 3.6 ensures that this ques-
tion be decided in polynomial time, which makes the conversion a polynomial
time conversion.

As discussed in Section 3, there are exponential blowups when moving
from general to functional v-automata, as well as from vstk- to vset-automata.
Another consequence of Theorem 4.9 is that these blowups disappear when we
can also use the core-algebra.

Corollary 4.11 Given ρ ∈ VAcore, we can compute an equivalent ρf ∈ VAcore
set

or ρf ∈ VAcore
stk , where

1. ρf is of polynomial size,
2. every v-automaton in ρf is functional,
3. every join ./ in ρf is a cross product ×.

Proof. First, note that the proof of Theorem 4.9 constructs spanner represen-
tations that use × instead of ./, and that the constructed v-automata are
functional. Hence, we can take a spanner representation ρ ∈ VAcore, and convert
it into a SpLog-formula ϕ, which is then converted into a spanner representation
ρ̂ ∈ VAset or ρ̂ ∈ VAstk. We need one additional step, as the conversion to ϕ
doubles the number of variables (as every x is turned into an xP and an xC). In
order to obtain ρf , we join ρ̂ with xP {Σ∗} · xC{Σ∗} ·Σ∗ for every x, and then
project away the xP . It is also possible to solve this with × instead of ./: For
every x, we define a spanner xN{Σ∗} ·x{Σ∗} ·Σ∗ (where xN is a new variable),
which we combine with ρ̂ by use of ×. Before projecting the variables xN , x

P ,
and xC away, we select ζ=xN ,xP and ζ=x,xC .
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Again, if non-functional automata are involved, Lemma 3.1 ensures that
computing an equivalent representation ρf in polynomial time would imply
P = NP; but we can compute in polynomial time a representation ρf that is
equivalent modulo ε. On the other hand, if all automata in ρ are functional, we
can compute an equivalent representations in polynomial time without relaxing
the requirements to modulo ε.

Corollary 4.11 also demonstrates that ./ can be simulated by a combina-
tion of × and ζ=, in addition to showing that the algebra compensates the
aforementioned disadvantages in succinctness. While we leave open whether
there are polynomial size conversions from SpLog to RGXcore, or from VAcore to
SpLogrx or RGXcore, we observe that, due to Theorem 4.9, all these questions
are equivalent to asking how efficiently SpLogrx can simulate NFAs.

Another question that we leave open is whether JSpLogK = JECregK (see
Section 6.2). But we observe an important difference between the two logics:
While evaluation of ECreg-formulas is PSPACE-hard, this does not hold for SpLog
(assuming NP 6= PSPACE).

Corollary 4.12 Given ϕ ∈ SpLog and a substitution σ, deciding σ |= ϕ is
NP-complete. For every fixed ϕ ∈ SpLog, given a substitution σ, deciding σ |= ϕ
is in NL.

Proof. We begin with the combined complexity: NP-hardness follows from the
NP-hardness of evaluation of RGXcore, as shown in [16] (or, more elegantly,
directly from the membership problem for pattern languages, that is used in
that proof). For the upper bounds, we could refer to the corresponding upper
bounds for RGXcore in [16] and discuss the necessary modifications, but it is
more convenient (and more elegant) to discuss this directly for SpLog.

The NP upper bound is due to the fact that, given ϕ ∈ SpLog(W) and σ, it
suffices to guess a substitution for every variable that is existentially quantified
in ϕ, and to verify this guess. As every variable has to be a subword of σ(W),
this is possible in polynomial time.

A similar reasoning proves the NL upper bound for data complexity: If
ϕ ∈ SpLog(W) is fixed, we can use two pointers to represent each variable of ϕ
by marking its first and its last letter in σ(W). We can then guess a substitution
for each variable, and verify the correctness of this substitution with a constant
amount of additional pointers that track our way through ϕ.

Theorem 4.9 also shows that the PSPACE upper bounds of deciding satis-
fiability and hierarchicality for RGXcore that were observed in [16] also apply
to VAcore

set and VAcore
stk . The same holds for the uppers bound for combined and

data complexity.

Finally, the undecidability results of for core spanners from [16] also carry
over to SpLog. This means universality, containment, and equivalence are
undecidable; and that adding negation turns SpLog into an undecidable theory.
There are also effects on the relative succinctness of SpLog-formulas (see
Section 4.2 in [16]). We briefly discuss aspects of this in Section 7.4.
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4.2 Proof of Theorem 4.9

Due to its length, we split the proof of Theorem 4.9 into multiple sections. The
conversions from SpLog to spanner representations can be found in Section 4.2.1,
while the conversions from spanner representations to SpLog are distributed
over Section 4.2.2 to 4.2.5 as follows:

1. First, we consider the conversion of primitive spanner representations:
(a) For regex formulas, see Section 4.2.2.
(b) For vset-automata, see Section 4.2.3.
(c) For vstk-automata, see Section 4.2.4.

2. We then examine the conversion of spanner operators in Section 4.2.5.

Two parts of the conversion to SpLog were already shown in [16]: The conversion
of regex formulas to ECreg from [16] only requires a minimal modification that
ensures safety (see Section 4.2.2), and the construction for spanner operators
can be used directly (see Section 4.2.5). We repeat these constructions below
in order to present all parts of the conversion procedure in one place, and to
show that these constructions really result in SpLog-formulas.

4.2.1 From SpLog to Spanner Representations

As the proof is basically identical for all three types of primitive spanner
representations (RGX, VAset, and VAstk), we consider all three at the same time.

Word equations: Consider the word equation η := (W, ηR) with ηR = η1 · · · ηn,
n ≥ 0, and ηi ∈ (Σ ∪Ξ)− {W} for 1 ≤ i ≤ n. Assume var(ηR) = {x1, . . . , xk}
for some k ≥ 0. If n = 0 (and ηR = ε), we output the functional regex formula
ε (or an equivalent functional automaton).

Otherwise, assume that we want to construct a regex formula (the case for
each of the automata representations proceeds analogously). We define the
regex formula α := α1 · · ·αn as follows: If ηi ∈ Σ, then αi := ηi. Else, we have
ηi = x with x ∈ Ξ. We distinguish two subcases: If i is the leftmost occurrence
of x in ηR (in other words, if |η1 · · · ηi−1|x = 0), we define αi := x{Σ∗}, and
`x := i. Otherwise, let αi := x(i){Σ∗}.

Next, define ρ := πY Sα, where Y := var(ηR), and S is a sequence of
selections ζ=

x,x(j) for each x ∈ var(ηR) and each j > `x with ηj = x.

Clearly, ρ can be computed in polynomial time. Note that the regex formula
α is functional, as each occurrence of x ∈ var(ηR) is converted into a distinct
variable x or x(i). In addition to this, we can turn α into a functional vset-
or vstk-automaton. Furthermore, the projection πY ensures that SVars (ρ) =
var(ηR) = free(η)− {W}.

In order to see that the construction is correct, first assume that there
is a substitution σ with σ |= η (i. e., σ(W) = σ(ηR)). Let w := σ(W), and
wi := σ(xi) for 1 ≤ i ≤ k. We now want to construct µ ∈ JρK(w) with
wµ(xi) = wi for 1 ≤ i ≤ k. To this end, consider the ref-word r = r1 · · · rn,
where each ri is defined as follows: If ηi ∈ Σ, then ri := ηi. Else, we have
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ηi = x for some x ∈ Ξ. Now, if i = lx, then ri := `xσ(x)ax. Otherwise, let
ri := `x(i)σ(x)ax(i) . As σ(W) = σ(ηR) = w, we know that clr(r) = w. Hence,
and as r follows the same construction principle as α, we observe r ∈ Ref(α,w).
Furthermore, wµr(x) = wµr(x(i)) = σ(x) holds for all x ∈ var(η) and all i > `x
with ηi = x. Thus, µr ∈ JSαK(w). This implies µ ∈ JρK(w) for µ := µr|Y , which
concludes this direction of the proof.

For the opposite direction, assume that µ ∈ JρK(w) for some w ∈ Σ∗. By
definition, there exists an r ∈ Ref(α,w) with µ = µr|Y . The construction of
α allows us to factorize r into r = r1 · · · rn, where for each 1 ≤ i ≤ n, one of
three cases holds:

1. ri ∈ Σ and ri = ηi,
2. ri = `xuiax, with ui ∈ Σ∗, x ∈ Ξ, and i = `x,
3. ri = `x(i)uiax, with ui ∈ Σ∗, x ∈ Ξ, and i > `x.

Furthermore, as µ ∈ JSαK(w), we observe u`x = ui for all x ∈ Ξ and all i > `x
with ηi = x. Hence, if we define a substitution σ by σ(W) := w, and σ(x) := u`x
for all x ∈ var(ηR), we obtain σ(ηR) = w = σ(W), and conclude σ |= η.

Constraint symbols: Let ψ := (ϕ ∧ CA(x)). Recall that SpLog-formulas are
safe; hence, constraint symbols occur only as part of formulas ϕ ∧ CA(x), with
x ∈ free(ϕ). Let ρϕ be an appropriate spanner representation that realizes ϕ,
and let xT be a new variable. If A is a regular expression and our goal is to
construct a regex formula, let ρA := Σ∗ · xT {A} · Σ∗. Likewise, if A is an
NFA, we can directly construct a corresponding v-automaton ρA. Now, let
ρ := πY ζ

=
x,xT (ρϕ × ρA), where Y := free(ϕ) − {W}. In order to see that ρ

realizes ψ, observe that for all w, we have that µ ∈ JρK(w) holds if and only if
both µ ∈ JρϕK and wµ(x) = wµ(xT ) ∈ R(A).

Disjunctions: Let ψ := (ϕ1 ∨ ϕ2), where ϕ1, ϕ2 ∈ SpLog(W) are realized by
spanner representations ρ1 and ρ2. As ψ is safe, free(ϕ1) = free(ϕ2) holds,
which implies SVars (ρ1) = SVars (ρ2). Hence, we can define ρ := (ρ1 ∪ ρ2). We
conclude that ρ realizes ψ directly from the definitions.

Conjunctions: Let ψ := (ϕ1 ∧ ϕ2), where ϕ1, ϕ2 ∈ SpLog(W) are realized by
spanner representations ρ1 and ρ2. Let Y := (SVars (ϕ1) ∩ SVars (ϕ2))− {W},
and let ρ̂2 be the spanner representation that is obtained from ρ2 by renaming
each x ∈ Y to a new variable xT . Now define ρ := πY S(ρ1 × ρ̂2), where S is a
sequence of selections ζ=x,xT for each x ∈ Y . Note that this is indeed × (instead

of a more general ./), as the renaming ensures that ρ1 and ρ̂2 have no common
variables. Due to the selections, we observe that µ ∈ JρK(w) holds if and only
if, firstly, µ ∈ Jρ1K(w) and, secondly, there is some µ̂2 ∈ Jρ̂2K(w) such that
wµ(x) = wµ̂2(xT ) for all x ∈ Y . Define µ2 by µ2(x) := µ̂2(xT ) for each x ∈ Y .
Then µ2 ∈ Jρ2K(w) holds if and only if µ̂2 ∈ Jρ̂2K(w). Now it is easily seen that
ρ realizes ψ.
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Existential quantifiers: Let ψ := (∃x : ϕ), with ϕ ∈ SpLog(W), x ∈ free(ϕ)−
{W}, and let ϕ be realized by some spanner representation ρϕ. Then we simply
define ρ := πY ρϕ, with Y := free(ϕ)− {W, x}. Again, we can conclude that ρ
realizes ϕ directly from the definitions.

4.2.2 Conversion of Functional Regex Formulas

As mentioned above, the construction in this section was already presented by
Freydenberger and Holldack in the proof of Theorem 3.12 in [16]. Although
that proof constructs some ECreg-formulas that are not SpLog-formulas in a
strict sense, Lemma 4.4 allows us to interpret these cases as SpLog-formulas
(we shall mention where this is relevant).

Consider a functional regex formula ρ ∈ RGX. Our goal is to construct a
formula ϕρ ∈ SpLogrx(W) that realizes ρ. As explained in [16], we can assume
that ρ does not contain ∅, by rewriting ρ in polynomial time if necessary4.

Throughout the construction, we use #»x [i..j] as shorthand notation for
xPi , x

C
i . . . , x

P
j , x

C
j (with #»z [i..j] defined analogously). We now distinguish the

following cases:

1. If ρ does not contain any variables, the ρ is a regular expression, and we
define ϕρ(W) := ∃x : (W = x ∧ Cρ(x)).

2. If ρ contains variables, we assume that SVars (ρ) = {x1, . . . , xk} with k ≥ 1.
As ρ is functional by definition of RGX, no variable of ρ may occur inside
of a Kleene star. Hence, we can distinguish three cases:
(a) ρ = ρ1 ∨ ρ2, where ρ1, ρ2 ∈ RGX with SVars (ρ1) = SVars (ρ2) =

SVars (ρ). We define

ϕρ(W; #»x [1..k]) :=
(
ϕρ1(W; #»x [1..k]) ∨ ϕρ1(W; #»x [1..k])

)
.

(b) ρ = ρ1 · ρ2, where ρ1, ρ2 ∈ RGX with SVars (ρ1)∪ SVars (ρ2) = SVars (ρ)
and SVars (ρ1) ∩ SVars (ρ2) = ∅. Without loss of generality, we assume
SVars (ρ1) = {x1, . . . , xm} and SVars (ρ2) = {xm+1, . . . , xk} with 0 ≤
m ≤ k. We define

ϕρ(W; #»x [1..k]) := ∃y1, y2, #»z [m+1..k] :(
(W = y1 · y2) ∧ ϕρ1(y1; #»x [1..m]) ∧ ϕρ2(y2; #»z [m+1..k])

∧
∧

m+1≤i≤n

(
(xPi = y1 · zPi ) ∧ (xCi = zCi )

))
.

Note that Lemma 4.4 allows us to use SpLogrx-formulas with other main
variables in the definition of this formula, and that this does not cause
complexity issues (see the discussion after that lemma).

4 The rewriting rules for this are 1. ∅∗ → ε, 2. (α̂∨ ∅)→ α̂ and (∅ ∨ α̂)→ α̂, 3. (α̂ · ∅)→ ∅
and (∅ · α̂)→ ∅, and 4. x{∅} → ∅.
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(c) ρ = x{ρ̂} for some x ∈ {x1, . . . , xk}, and ρ̂ is a functional regex formula
with SVars (ρ̂) = SVars (ρ)− {x}. Without loss of generality, let x = x1.
We define

ϕρ(W; #»x [1..k]) :=
(

(xP1 = ε) ∧ (W = xC1 ) ∧ ϕρ̂(W; #»x [2..k])
)
.

This case also uses Lemma 4.4.

Clearly, the size of ϕρ is polynomial in the size of ρ. Furthermore, we construct
ϕρ by following the syntax of ρ without any expensive additional computations.
Therefore, we conclude that ϕρ can be computed in polynomial time. For the
proof of correctness and further explanations, see Theorem 3.12 in [16].

4.2.3 Conversion of vset-Automata

The construction for vset-automata is more involved than for regex formulas.
The main reason for this is that the latter are restricted to functional regex
formulas, which ensure syntactically that every variable is assigned exactly
one value. In contrast to this, vset-automata ensure this assignment in their
behavior (in the original semantics from [13], this is ensured in the definition
of accepting runs; our ref-word definition ensures this through Ref).

While one could encode all possible combinations of how variables overlap,
this would result in a formula with a size that is exponential in the number of
variables. As our goal is to construct a formula in polynomial time (and, hence,
also polynomial size), we choose a more refined approach. Let A = (Q, q0, qf , δ)
be a vset-automaton, and let SVars (A) = {x1, . . . , xk}, k ≥ 0.

We now make some observations that form the fundament the construction:
For every w ∈ Σ∗, every r ∈ Ref(A,w) has a unique factorization

r = w0 · v1 · w1 · v2 · · ·w2k−1 · v2k · w2k,

with wi ∈ Σ∗ and vi ∈ {`xj
,axj

| 1 ≤ j ≤ k}. Then w = w0 · w1 · · ·w2k, while
the vi describe the variable operations (opening or closing). Furthermore, there
exist states s0, . . . , s2k, t0, . . . , t2k ∈ Q such that the following holds:

1. s0 = q0,
2. ti ∈ δ(si, wi) for each 0 ≤ i ≤ 2k,
3. sj+1 ∈ δ(tj , vj+1) for each 0 ≤ j < 2k,
4. t2k = qf .

In other words, each si is the state between processing vi and wi, and ti is the
state between wi and vi+1. Also see Figure 3.

The main idea is that special variables represent all states si and ti, and in
which vi variables are opened and closed. Two central limitations of SpLog are
that each variable has to be a subword of W, and that it is a purely positive
theory. Nonetheless, we can work around this: For each piece of information
that is represented (e. g., for each state si), we define a group of variables that
represents the possible choices (e. g. variables sqi for all q ∈ Q), and ensure
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r = w0 v1 w1 v2 w2 · · · w2k−1 v2k w2k

s0 t0 s1 t1 s2 t2 s2k−1 t2k−1 s2k t2k

Fig. 3 A graphical representation of the factorization of r ∈ Ref(A,w), which is used in
the proof of Theorem 4.9, Section 4.2.3. The si and ti denote the states before and after
processing the wi, while the vi denote variable operations.

that for every satisfying σ, exactly one of these variables is mapped to the first
letter of W, while all others are mapped to ε.

Our goal is constructing a SpLog(W)-formula ϕ that realizes A on all w ∈ Σ+

(the case of w = ε is ignored, as the conversion works modulo ε). Assuming
w 6= ε allows us to define the formula ϕâ := ∃ŵ : (W = â · ŵ), which stores
the first letter of w in â, the special variable that we shall use to synchronize
various subformulas.

As mentioned above, the construction uses various sets of variables, where
in each set, exactly one shall be mapped to the first letter of w, while all others
are mapped to ε. This allows us to synchronize different parts of ϕ, and to store
non-deterministic decisions, like the assigned states. The sets are as follows:

1. For 0 ≤ i ≤ 2k, Si := {sqi | q ∈ Q}, where sqi = â represents si = q,
2. For 0 ≤ i ≤ 2k, Ti := {tqi | q ∈ Q}, where tqi = â represents ti = q,

3. For 1 ≤ i ≤ k, Oi := {oji | 1 ≤ j ≤ 2k}, where oji = â represents vj = `xi
,

4. For 1 ≤ i ≤ k, Ci := {cji | 1 ≤ j ≤ 2k}, where cji = â represents vj = axi
.

In order to manage these variables, we heavily rely on four types of auxiliary
formulas. We begin with the formulas that handle the allocation of the states
si and ti. For 0 ≤ i ≤ 2k, q ∈ Q, let

ϕqs,i := (sqi = â) ∧
∧
p∈Q,
p 6=q

(spi = ε), ϕqt,i := (tqi = â) ∧
∧
p∈Q,
p6=q

(tpi = ε).

On an intuitive level, ϕqs,i represents that si = q (likewise, ϕqt,i represents
ti = q). Note that free(ϕqs,i) = Si ∪ {W, â} and free(ϕqt,i) = Ti ∪ {W, â}, as we
implicitly assume the formulas to be SpLog(W)-formulas (see Lemma 4.4, and
the discussion thereafter). In fact, this definition of ϕqs,i is to be understood as
a notational shorthand for the equivalent (but less readable) SpLog(w)-formula

ϕqs,i = (∃ŵ : (W = sqi ŵ) ∧ (W = âŵ)) ∧
∧
p∈Q,
p 6=q

(∃ŵ : (W = spi ŵ) ∧ (W = ŵ)) .

This equivalence only holds only if we assume that â refers to the first letter of
W, which shall be ensured by ϕâ. Further down, the fact that the set of free
variables of ϕqs,i depends only on i, and not on q, shall allow us to use these
formulas in disjunctions.
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To handle the variable operations, for 1 ≤ i ≤ k and 1 ≤ j ≤ 2k, we define

ϕjo,i := (oji = â) ∧
∧

1≤l≤2k,
l 6=j

(oli = ε), ϕjc,i := (cji = â) ∧
∧

1≤l≤2k,
l 6=j

(cli = ε),

Like our formulas for the states si and ti, the formulas ϕjo,i and ϕjc,i represent

vj = `xi
and vj = axi

, respectively. Again, we observe free(ϕjo,i) = Oi∪{W, â},
and free(ϕjc,i) = Ci ∪ {W, â}, which we shall also use to construct disjunctions.

While the formulas ϕjo,i and ϕjc,i allow us to check where a variable xi is
opened or closed, we also need formulas that express the opposite direction
(i. e., which variable xj is opened or closed in some operation vi). To this end,
we define for 1 ≤ i ≤ 2k and 1 ≤ j ≤ k the formulas

ϕ`,jv,i :=
(
(oij = â) ∧ (cij = ε)

)
∧

∧
1≤l≤k,
l 6=j

(
(oil = ε) ∧ (cil = ε)

)
,

ϕa,jv,i :=
(
(oij = ε) ∧ (cij = â)

)
∧

∧
1≤l≤k,
l 6=j

(
(oil = ε) ∧ (cil = ε)

)
.

Like ϕio,j , the formula ϕ`,jv,i expresses that vi = `xj , and ϕic,j and ϕa,jv,i both

express vi = axj
. But free(ϕ`,jv,i ) = free(ϕa,jv,i ) = {W, â} ∪ {oij , cij | 1 ≤ j ≤ k}.

Hence, these new formulas can be used in disjunctions where the variable
operation is fixed (instead of the variable). We now define

ϕ := ∃ #»v : ϕâ ∧ ϕfact ∧ ϕinit ∧ ϕfinal ∧ ϕspan ∧ ϕt−trans ∧ ϕv−trans,

where the sequence of variables #»v is an arbitrary ordering of the variable set

V := {a, w0, w1, . . . , w2k} ∪
2k⋃
i=0

Si ∪
2k⋃
i=0

Ti ∪
k⋃
i=1

Oi ∪
k⋃
i=1

Ci,

and the subformulas of ϕ are defined as follows:

– ϕfact := (W = w0 · w1 · · ·w2k). This factorizes w into w = w0 · w1 · · ·w2k.
– ϕinit := ϕq0s,0. This ensures s0 = q0
– ϕfinal := ϕ

qf
t,2k. This expresses t2k = qf .

– ϕspan is defined as

k∧
i=1

2k−1∨
j=1

2k∨
l=j+1

(
ϕjo,i ∧ϕ

l
c,i ∧ϕfact ∧

(
xPi = w0 · · ·wj−1

)
∧
(
xCi = wj · · ·wl−1

))
To every xi, this formula assigns a range between vj and vl, by setting vj =
`xi

and vl = axi
with l > j, as well as xPi = w0 · · ·wj−1, xCi = wj · · ·wl−1.

To see that ϕspan is safe, note that or each i, the formula consists of a
disjunction of formulas, each of which has the free variables

Oi ∪ Ci ∪ {W, â, w0, . . . , w2k, x
P
i , x

C
i }.
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– ϕt−trans covers terminal transitions. It ensures that each wi corresponds
to a path from si to ti in A, where the transitions along the path have
labels from Σ ∪ {ε}. In order to define this, for each pair p, q ∈ Q, we
define an NFA Ap,q := (Q, p, q, δp,q), where δp,q is the restriction of δ to
Q× (Σ ∪ ε)→ 2Q. In other words, for all q̂ ∈ Q and all λ ∈ (Σ ∪ {ε} ∪ Γ ),

δp,q(q̂, λ) :=

{
δ(q̂, λ) if λ ∈ Σ ∪ {ε},
∅ if λ ∈ Γ .

Hence, each Ap,q is the NFA over Σ that simulates A when starting in p,
accepting in q, and using no variable transitions. Then we define

ϕt−trans :=

2k∧
i=0

∨
p,q∈Q

(
ϕps,i ∧ ϕ

q
t,i ∧ (wi vW) ∧ CAp,q

(wi)
)
,

where we use wi v W as shorthand for ∃ŵ1, ŵ2 : (W = ŵ1 ·wi ·ŵ2). (This has
to be included, otherwise, we could not use CAp,q (wi) inside the conjunction.)
Again, it is easily seen that the formula is safe, as for each i, the disjunction
ranges over subformulas that have the free variables {W, â, wi} ∪ Si ∪ Ti.
Now, ϕt−trans states that for each 0 ≤ i ≤ 2k, wi ∈ L(Asi,ti), which is
equivalent to ti ∈ δ(si, wi).

– ϕv−trans covers variable transitions. It ensures si ∈ δ(ti−1, vi) for each vi.
We define ϕv−trans as

2k∧
i=1

k∨
j=1

((
ϕ`,jv,i ∧

∨
p∈Q,

q∈δ(p,`xj
)

(ϕpt,i−1 ∧ϕ
q
s,i)
)
∨
(
ϕa,jv,i ∧

∨
p∈Q,

q∈δ(p,axj
)

(ϕpt,i−1 ∧ϕ
q
s,i)
))

Here, ϕv−trans considers each vi, finds the (unique) j with vi = {`xi ,axi},
and ensures si ∈ δ(ti−1,`xj

). To see that ϕv−trans is safe, first recall that for
the used auxiliary formulas, the set of free variables depends only on i (not

on j, p, or q). Also recall that free(ϕ`,jv,i ) = free(ϕa,jv,i ) holds by definition.

Correctness: In order to see the correctness of this construction, recall the
explanations that are provided with each subformula. First, we examine why
every σ ∈ JϕK corresponds to an r ∈ Ref(A, σ(W)). By ϕfact, we have σ(W) =
σ(w0) · · ·σ(w2k). Furthermore, ϕspan and ϕv−trans ensure that the vi are valid
for a word from Ref(A, σ(W)): Due to ϕv−trans, every vi with 1 ≤ i ≤ 2k
is assigned exactly one value from the set {`x1

, . . . ,`xk
,ax1

, . . . ,axk
}; and

due to ϕspan, for every 1 ≤ i ≤ k, there exist exactly one j and one l with
1 ≤ j < l ≤ k, such that vj = `xi

and vl = axi
.

Next, we check that r corresponds to an accepting run of A: ϕinit and ϕfinal

ensure s0 = q0 and t2k = qf , respectively. For 0 ≤ i ≤ 2k, ϕt−trans guarantees
ti ∈ δ(qi, σ(wi)), while ϕv−trans enforces si ∈ δ(ti−1, vi) for 1 ≤ i ≤ 2k. This
allows us to conclude that σ encodes an r ∈ Ref(A, σ(W)). Finally, ϕspan also
ensures that all span variables xPi and xCi have the correct contents.
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For the other direction, assume that r ∈ Ref(A,w). As explained above, r
has a unique factorization r = w0v1w1 · · · v2kw2k, from which we can directly
derive a substitution σ ∈ JϕK.

Complexity: In oder to prove that ϕ can be computed in polynomial time,
it suffices to show that the size of ϕ is polynomial in the size of A (as ϕ
is directly derived from the structure of A). Let n := |Q|, and recall that
k = |SVars (A)|. By examining the subformulas, we can determine that ϕ is of
size O(k4 + k2n3 + kn4), which is clearly polynomial in the size of A. Hence, ϕ
can be constructed in polynomial time.

4.2.4 Conversion of vstk-Automata

The construction for vstk-automata is very similar to the construction for
vset-automata (see Section 4.2.3). But as vstk-automata do not close variables
explicitly, we need to extend the constructed formula. Let A = (Q, q0, qf , δ) be
a vstk-automaton with SVars (A) = {x1, . . . , xk}, k ≥ 0.

For every w ∈ Σ∗, every r̂ ∈ Ref(A,w) can be rewritten into an r ∈ (Σ∪Γ )∗,
such that µr = µr̂, by replacing each a with an appropriate axi

. Then r has
the same unique factorization r = w0 · v1 · w1 · v2 · · ·w2k−1 · v2k · w2k, as in
Section 4.2.3. This allows us to reuse the construction from the vset-automata
case, if we also add a formula ϕstack that ensures that variables are closed in
the stack order. We define

ϕ := ∃ #»v : ϕâ ∧ ϕfact ∧ ϕinit ∧ ϕfinal ∧ ϕspan ∧ ϕt−trans ∧ ϕ̂v−trans ∧ ϕstack,

where all formulas are defined as in Section 4.2.3, in addition to the following
two new formulas:

– ϕ̂v−trans is ϕv−trans, adapted to use a instead of axi . We define ϕ̂v−trans as

2k∧
i=1

k∨
j=1

((
ϕ`,jv,i ∧

∨
p∈Q,

q∈δ(p,`xj
)

(ϕpt,i−1∧ϕ
q
s,i)
)
∨
(
ϕa,jv,i ∧

∨
p∈Q,

q∈δ(p,a)

(ϕpt,i−1∧ϕ
q
s,i)
))

Hence, ϕ̂v−transcan interpret each a as any axi . This does not ensure that
variables are closed in the correct order (this is done by ϕstack).

– ϕstack states that each closing operator closes the most recent open variable.
To this end, we define ϕstack as∧

1≤i<k

∧
i<j≤k

∨
1≤l1<l2,

l2<l3<l4≤2k

((
ϕl1o,i∧ϕ

l2
o,j∧ϕ

l3
c,j∧ϕ

l4
c,i

)
∨
(
ϕl1o,i∧ϕ

l2
c,i∧ϕ

l3
o,j∧ϕ

l4
c,j

)
∨
(
ϕl1o,j ∧ ϕ

l2
o,i ∧ ϕ

l3
c,i ∧ ϕ

l4
c,j

)
∨
(
ϕl1o,j ∧ ϕ

l2
c,j ∧ ϕ

l3
o,i ∧ ϕ

l4
c,i

))
.

In order to understand this formula, let oi, ci ∈ {1, . . . , 2k} such that
voi = `xi

, and vci = axi
, and define oj , cj analogously for xj . The four
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parts of the inner disjunction describe each possible combination how xi
and xj can be opened and closed according to the rules of a vset-automaton:
The first expresses oi < oj < cj < ci, the second oi < ci < oj < cj , and
remaining two express the same for switched roles of xi and xj . Hence, for
any pair i, j, this ensures that if xj is opened while xi is open, xj has to be
closed before xi can be closed (and vice versa). As ϕstack expresses this for
all pairs of variables in SVars (A), this ensures that all variables are closed
correctly. The formula is safe, as for all fixed i, j, the disjunctions range
over formulas with free variables {W} ∪Oi ∪Oj ∪ Ci ∪ Cj .

The correctness of the construction follows immediately from our remarks on
ϕstack, and from correctness of the construction from Section 4.2.3. Regarding
the complexity, we observe that ϕstack is of size O(k7): There are O(k2) different
combinations of i and j. Each of these leads to O(k4) choices for l1 to l4,
each of which requires a formula of size O(k). This leads to a total size of
O(k7+k2n3+kn4), which is larger than for vset-automata, but still polynomial
in the size of A.

4.2.5 Putting The Parts Together (Converting Operators)

Here, we can directly use the construction from the proof of Theorem 3.12
in [16]. We use the same shorthand notation #»x [i..j] as in Section 4.2.2. In
contrast to Section 4.2.2, we shall use Lemma 4.4 only once.

Consider a representation ρ ∈ RGXcore or ρ ∈ VAcore. To construct a
SpLog(W)-formula ϕρ that realizes ρ, we distinguish the following cases:

1. If ρ is a regex formula or a vset-automaton, we construct ϕρ as described
in the appropriate previous section.

2. ρ = πY ρ̂, with Y = SVars (ρ) and SVars (ρ̂) ⊇ SVars (ρ). Assume w. l. o. g.
Y = {x1, . . . , xn} and SVars (ρ̂) = {x1, . . . , xn+m} with m,n ≥ 0. We define

ϕρ(W; #»x [1..n]) := ∃ #»x [n+1..n+m] : ϕρ̂
(
W; #»x [1..n+m]

)
.

3. ρ = ζ=#»x ρ̂, with SVars (ρ) = {x1, . . . , xk} where k ≥ 2, as well as #»x ∈
(SVars (ρ))m with 2 ≤ m ≤ k, and SVars (ρ̂) = SVars (ρ). Assume w. l. o. g.
that #»x = x1, . . . , xk. We define

ϕρ(W; #»x [1..k]) :=
(
ϕρ̂(W; #»x [1..k]) ∧

∧
2≤i≤k

(xC1 = xCi )
)
.

In this case, we use Lemma 4.4 to interpret this as a SpLog(W)-formula.
4. ρ = (ρ1 ∪ ρ2), with SVars (ρ1) = SVars (ρ2) = SVars (ρ) = {x1, . . . , xk}. Let

ϕρ(W; #»x [1..k]) :=
(
ϕρ1

(
W; #»x [1..k]

)
∨ ϕρ2(W; #»x [1..k])

)
.

5. ρ = (ρ1 ./ ρ2) with SVars (ρ) = SVars (ρ1) ∪ SVars (ρ2). We assume with-
out loss of generality that SVars (ρ1) = {x1, . . . , xl} and SVars (ρ2) =
{xm, . . . , xn} with 0 ≤ l ≤ n and 1 ≤ m ≤ n+ 1. We define

ϕρ(W; #»x [1..n]) :=
(
ϕρ1(W; #»x [1..l]) ∧ ϕρ2(W; #»x [m..n])

)
.



40 D. D. Freydenberger

Explanations and a correctness proof can be found in the proof of Theorem 3.12
in [16]. As ϕρ can be constructed in polynomial time, this concludes the proof.

5 Expressing Languages and Relations in SpLog

This section examines expressing relations and languages in SpLog: Section 5.1
lays the formal groundwork by introducing selectability of relations in SpLog.
Section 5.2 defines a normal form with an example application. Section 5.3
provides an efficient conversion of a subclass of xregex to SpLog.

5.1 Selectable Relations

One of the topics of Fagin et al. [13] is which relations can be used for selections
in core spanners, without increasing the expressive power. This translates to
the question which relations can be used in the definition of SpLog-formulas.
For ECreg, this question is simple: If, for any k-ary relation R, there is an
ECreg-formula ϕR such that #»w |= ϕR holds if and only if #»w ∈ R, we know
that we can use ϕR in the construction of ECreg-formulas. In contrast to this,
the special role of the main variable makes the situation a little bit more
complicated for SpLog. Fortunately, [13] already introduced an appropriate
concept for core spanners, that we can directly translate to SpLog: A k-ary
word relation R is selectable by core spanners if, for every ρ ∈ RGXcore and
every sequence #»x = (x1, . . . , xk) of variables with x1, . . . , xk ∈ SVars (ρ), the
spanner JζR#»x ρK is expressible in RGXcore, where ζR is the generalization of ζ= to
R. More specifically, JζR#»x ρK(w) is defined as the set of all µ ∈ JρK(w) for which(
wµ(x1), . . . , wµ(xk)

)
∈ R.

Analogously, we say thatR is SpLog-selectable if for every ϕ ∈ SpLog(W) and
every sequence #»x = (x1, . . . , xk) of variables with x1, . . . , xk ∈ free(ϕ)− {W},
there is a SpLog-formula ϕR#»x with free(ϕ) = free(ϕR#»x ), and σ |= ϕR#»x if and only
if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. Before we consider some examples, we
prove that these two definitions are equivalent not only to each other, but also
to a more convenient third definition.

Lemma 5.1 For every relation R ⊆ (Σ∗)k, k ≥ 1, the following conditions
are equivalent:

1. R is selectable by core spanners,
2. R is SpLog-selectable,
3. there is ϕ(W ;x1, . . . , xk) ∈ SpLog such that for all σ, we have

σ |= (∃W : ϕ) if and only if (σ(x1), . . . , σ(xk)) ∈ R.

Proof. Before we begin with the proof, not that we include the existential
quantifier ∃W in the third condition to make the notation more elegant. With-
out this, we would need to require σ(xi) v σ(W) for all xi in addition to
(σ(x1), . . . , σ(xk)) ∈ R to make the “if”-direction of the condition work. Choose
R ⊆ (Σ∗)k, k ≥ 1.
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Equivalence of conditions 1 and 2: We first prove that R is selectable by core
spanners if and only if it is SpLog-selectable. We only examine the “only if ”-
direction (the “if”-direction proceeds analogously). Assume that R is selectable
by core spanners. Let ϕ ∈ SpLog(W), choose x1, . . . , xk ∈ free(ϕ)− {W}, and
define #»x = (x1, . . . , xk). Our goal is constructing a formula ϕR such that
σ |= ϕR if and only if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. According to
Theorem 4.9, there exists a representation ρ ∈ RGXcore that realizes ϕ. More
explicitly, this means that SVars (ρ) = free(ϕ)−{W}, and for every w ∈ Σ∗, we
have σ ∈ JϕK(w) if and only if there exists some µ ∈ JρK(w) with wµ(x) = σ(x)
for all x ∈ SVars (ρ).

As R is selectable by core spanners, there also exists a representation ρR ∈
RGXcore with JρRK = JζR#»x ρK. Then SVars

(
ρR
)

= SVars (ρ), and for all w ∈ Σ∗,
µ ∈ JρRK(w) holds if and only if µ ∈ JρK(w) and (wµ(x1), . . . , wµ(xk)) ∈ R.

Hence, for all w ∈ Σ∗, we have that σ ∈ JϕK(w) and (σ(x1), . . . , σ(xk)) ∈ R
holds if and only if there exists some µ ∈ JρRK(w) with wµ(x) = σ(x) for all

x ∈ SVars
(
ρR
)
.

Again by Theorem 4.9, there exists a formula ϕ̂R ∈ SpLog that realizes ρR.
Note that free(ϕ̂R) = {W} ∪ {xP , xC | x ∈ free(ϕ)− {W}}. In order to clean
this up, let ϕ̃R be obtained from ϕ̂R by renaming each xC to x. Then define
#»p as any ordering of the set {xP | x ∈ free(ϕ̃R)}, and let ϕR := ∃ #»p : ϕ̃R.
Then for every w ∈ Σ∗, we have σ ∈ JϕRK(w) if and only if there exists some
µ ∈ JρRK(w) with wµ(x) = σ(x) for all x ∈ SVars (ρR). As we established before,
this holds if and only if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. This concludes
the “only if”-direction of the proof of the equivalence of selectability by core
spanners and by SpLog. As mentioned above, the proof of the “if”-direction
proceeds analogously, by using Theorem 4.9 twice.

Equivalence of conditions 2 and 3: For the “if”-direction, let ϕ(W;x1, . . . , xk) ∈
SpLog(W) such that σ |= (∃W : ϕ) if and only if (σ(x1), . . . , σ(xk)) ∈ R. Now,
for ψ ∈ SpLog(W) and #»x := (x1, . . . , xk) ∈ (free(ψ))k, define ψR#»x := (ψ ∧ ϕ).
Then σ |= ψR#»x if and only if σ |= ψ and (σ(x1), . . . , σ(xk)) ∈ R. As ψR#»x is a
SpLog-formula,we observe that R is SpLog-selectable.

For the “only if”-direction, assume R is SpLog-selectable. We define a
SpLog(W)-formula ψ :=

∧
1≤i≤k ∃yi, zi : (W = yi · xi · zi). Clearly, σ |= ψ if and

only if σ(xi) v σ(W) for all 1 ≤ i ≤ k. As R is SpLog-selectable, there exists
ϕ ∈ SpLog such that σ |= ϕ if and only if σ |= ψ and (σ(x1), . . . σ(xk)) ∈ R.
Hence, σ |= (∃W : ϕ) if and only if (σ(x1), . . . , σ(xk)) ∈ R.

The equivalence of the two notions of selectability is one of the features
of SpLog: When defining core spanners, one can use SpLog to define relations
that are used in selections. As the proof is constructive and uses Theorem 4.9,
this does not even affect efficiency.

Before we discuss how the equivalent third condition in Lemma 5.1 can be
used to simplify this even further, we consider a short example. As shown by
Fagin et al. [13], the relation v is selectable by core spanners. We reprove this
by showing that it is SpLog-selectable.
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Example 5.2 The subword relation Rv := {(x, y) | x v y} is selected by the
SpLog-formula

ϕv(W;x, y) := ∃z1, z2, y1, y2 : ((W = z1y1xy2z2) ∧ (W = z1yz2)).

If this is not immediately clear, note that the formula implies z1y1xy2z2 = z1yz2,
which can be reduced to y1xy2 = y. �

This allows us to use x v y as a shorthand in SpLog-formulas. We also
use v to address two inconveniences that arise when strictly observing the
syntax of SpLog-formulas: Firstly, the need to introduce additional variables
that might affect readability (like z1 and z2 in Example 5.2), and, secondly, the
basic form that equations have the main variable W on the left side. Together
with Lemma 4.4 and the third condition of Lemma 5.1, the selectability of v
allows us more compact definitions of SpLog-selectable relations: Instead of
dealing with a single main variable, we can combine multiple SpLog-functions
with different main variables. Hence, when using SpLog to define a relation
over a set of variables V , we may assume that the formula is of the form
(
∧
x∈V x vW) ∧ ϕ, and specify only ϕ.

Example 5.3 Using the aforementioned simplifications, we can write the formula
from Example 5.2 as ϕv(W;x, y) := ∃y1, y2 : (y = y1 · x · y2). Similarly, we can
select the prefix relation with the formula ϕpref(W;x, y) := ∃z : y = xz. Both
are shorthands for SpLog(W)-formulas.

As mentioned above, this allows us use x v y as syntactic sugar. Other
extensions are x 6= ε and x 6= y: For x 6= ε, we can choose

ϕ6=ε(W;x) := (x vW) ∧ (CΣ+(x)).

The more general x 6= y is expressed as follows:

ϕ6=(W;x, y) :=
((
∃x2 : (x = yx2) ∧ (x2 6= ε)

)
∨
(
∃y2 : (y = xy2) ∧ (y2 6= ε)

))
∨
( ∨
a∈Σ

(
∃z, x2, y2, b : (x = zax2) ∧ (y = zby2) ∧ CΣ−{a}(b)

))
The core spanner selectability of 6= was already shown in [13], Proposition 5.2.
Depending on personal preferences, ϕ6= might be considered more readable
than the spanner in that proof. A similar construction was also used in [30]
to show EC-expressibility of 6=, as Σ+ and Σ − {a} can be expressed without
using constrains; for example by defining ϕ 6=ε(W;x) :=

∨
a∈Σ(∃y : x = ay). �

Example 5.4 In this example, we show that SpLog-formulas can be used to
express relations of words that are approximately identical. In literature, this
is commonly defined by the notion of an edit distance between two words.
Following Navarro [37], we consider edit distances that are based on three
operations: For words u, v ∈ Σ∗, we say that v can be obtained from u with

1. an insertion, if u = u1 · u2 and v = u1 · a · u2,
2. a deletion, if u = u1 · a · u2 and v = u1 · u2,



A Logic for Document Spanners 43

3. a replacement, if u = u1 · a · u2 and v = u1 · b · u2,

where u1, u2 ∈ Σ∗ and a, b ∈ Σ. For every choice of permitted operations,
a distance d(u, v) is then defined as the minimal number of operations that
is required to obtain v from u. One common example is the Levenshtein-
distance dL (also called edit distance), which uses insertion, deletion, and
replacement. The following SpLog-formula demonstrates that, for each k ≥ 1,
the relation of all (u, v) with dL(u, v) ≤ k is SpLog-selectable:

ϕL(k)(W;x, y) := ∃x1, . . . , xk, y1, . . . , yk, z0, . . . , zk :

(x = z0 · x1 · z1 · x2 · z2 · · · · xk · zk) ∧
k∧
i=1

Cα(xi)

∧ (y = z0 · y1 · z1 · y2 · z2 · · · · yk · zk) ∧
k∧
i=1

Cβ(yi)

where α := β := (Σ ∨ ε). An insertion is expressed by assigning xi = ε and
yi ∈ Σ, a deletion by xi ∈ Σ and yi = ε, and a replacement by xi, yi ∈ Σ. This
case and xi = yi = ε also handle if less than k operations are used.

Hence, by changing the constraints, this formula can also be used for
the Hamming distance (only replacements), and the episode distance (only
insertions), by defining α := β := Σ, or α := ε and β := (Σ ∨ ε), respectively.

With some additional effort, we can also express the relation for the longest
common subsequence distance, which uses only insertions and deletions. Instead
of changing α or β, we need to ensure that for every i, xi = ε or yi = ε holds.
We cannot directly write ((xi = ε) ∨ (yi = ε)), as this is not a safe formula.
Instead, we extend the conjunction inside ϕL(k) with

k∧
i=1

(
((xi = ε) ∧ (yi vW)) ∨ ((yi = ε) ∧ (xi vW))

)
,

which is safe and equivalent to
∧k
i=1((xi = ε) ∨ (yi = ε)). In other words, we

use v to guard the xi and yi. �

5.2 A Normal Form for SpLog

Another advantage of using a logic is the existence of normal forms5, although
this should not be misunderstood as a claim that core spanners do not have
normal forms. The core-simplification lemma (Lemma 4.16 in Fagin et al. [13])
states that every core spanner can be expressed as πV SA, where A ∈ VAset,
V ⊆ SVars (A), and S is a sequence of selections ζ=x,y for x, y ∈ SVars (A). But
as the construction from the proof of Theorem 4.9 converts vset-automata into

5 “Normal form” in the sense that every formula can be rewritten into an equivalent
formula that uses a restricted syntax.
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rather complicated formulas, this does not directly translate into a compact
normal form for SpLog. Instead, we consider the following normal form, which
allows us to study a closure property of the class of SpLog-definable languages
(Lemma 5.7 below). We shall also use this normal form in Section 7.3 to
establish connections between SpLog and certain types of graph queries.

Definition 5.5 A ϕ ∈ SpLog is a prenex conjunction if it is of the form
ϕ = ∃x1, . . . , xk : (

∧m
i=1 ηi ∧

∧n
j=1 Cj), with k, n ≥ 0, m ≥ 1, where the ηi are

word equations, and the Cj are constraints. A SpLog-formula is in DPC-normal
form if it is a disjunction of prenex conjunctions. Let DPC and PC denote the
class of all SpLog-formulas in DPC-normal form and the class of all prenex
conjunctions, respectively. We use DPCrx and PCrx for the subclasses of SpLogrx.

Lemma 5.6 Given ϕ ∈ SpLog, we can compute ψ ∈ DPC with ϕ ≡ ψ.

Proof. First, we ensure that for every subformula of ϕ that has the form ∃x : ψ,
x does not appear in ϕ outside of ψ. In particular, this means that quantifiers
do not rebind variables, and no two quantifiers range over the same variable.
This is easily achieved by renaming variables. The DPC-normal form can then
be computed by applying the following rewriting rules:(

(ϕ1 ∨ ϕ2) ∧ ϕC
)
→
(
(ϕ1 ∧ ϕC) ∨ (ϕ2 ∧ ϕC)

)
, (R1)(

(∃x : ϕ1) ∧ ϕC)
)
→
(
∃x : (ϕ1 ∧ ϕC)

)
, (R2)(

∃x : (ϕ1 ∨ ϕ2)
)
→
(
(∃x : ϕ1) ∨ (∃x : ϕ2)

)
, (R3)

where x ∈ Ξ, ϕ1, ϕ2 ∈ SpLog, and ϕC is a SpLog-formula or a constraint.
These rules are also applied modulo commutation of ∧ and ∨; in other words,
ϕC ∧ (ϕ1 ∨ ϕ2) is rewritten to (ϕ1 ∧ ϕC) ∨ (ϕ2 ∧ ϕC).

Intuitively, the rules can be understood as follows: If one views the syntax
tree of the formula, R1 moves ∨ over ∧, R2 moves ∃ over ∧, and R3 moves
∨ over ∃. Hence, when no more rules can be applied, the resulting formula
has ∨ over ∃, and ∃ over ∧, which is exactly the order that is required by
DPC-normal form.

Furthermore, note that the rules preserve the syntactic requirements of
SpLog-formulas. In particular, as the equations are not rewritten and no new
existential quantifiers are introduced, it suffices to check that the resulting
formulas are safe. For example, consider R1. For every ϕ ∈ SpLog with ϕ =
((ϕ1 ∨ ϕ2) ∧ ϕC), free(ϕ1) = free(ϕ2) must hold. This has two consequences.
Firstly, free(ϕ1 ∧ ϕC) = free(ϕ2 ∧ ϕC), which means that the disjunction
that results from R1 is safe. Secondly, if ϕC is some constraint CA(x), then
x ∈ free(ϕ1 ∨ϕ2) must hold. Hence, as free(ϕ1) = free(ϕ2) = free(ϕ1 ∨ϕ2), the
resulting subformulas (ϕ1 ∧ ϕC) and (ϕ2 ∧ ϕC) are safe.

The construction from the proof of Lemma 5.6 might result in an exponential
blowup; the author conjectures that this blowup cannot be avoided.

We use DPC-normal form to illustrate some differences between SpLog and
ECreg. First, we define the notion of the language of a formula (in Section 6.1,
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we shall see that this has applications beyond the language theoretic point
of view). Every ECreg-formula ϕ defines a language Lx(ϕ) := {σ(x) | σ |= ϕ}
for every variable x ∈ free(ϕ). If ϕ has exactly one free variable (say x), we
define L(ϕ) := Lx(ϕ). For C ⊆ ECreg, a language L ⊆ Σ∗ is a C-language if
there is a formula ϕ ∈ C with L(ϕ) = L. We denote this by L ∈ L(C). Hence,
SpLog-languages are always defined by the main variable.

For L ⊆ Σ∗ and a ∈ Σ, we define L/a, the right quotient of L by a, as the
language of all w with wa ∈ L. The class of ECreg-languages is closed under this
operation, as we have L(ϕ/a) = L(ϕ)/a for ϕ/a(w) := ∃u : ((u = wa) ∧ ϕ(u)).
But as SpLog-variables can only contain subwords of the main variable, writing
u = Wa is not possible in SpLog(W). Hence, our proof for the SpLog-case is
more involved and relies on Lemma 5.6.

Lemma 5.7 L/a ∈ L(SpLog) for all L ∈ L(SpLog) and all a ∈ Σ.

Proof. Let ϕ(W) ∈ SpLog(W), and let a ∈ Σ. It suffices to prove the claim for
ϕ ∈ PC: Assume that ϕ is not a prenex conjunction. According to Lemma 5.6,
ϕ ≡

∨
ϕi for some ϕi ∈ PC. Hence, L(ϕ)/a =

⋃
(L(ϕi)/a).

Thus, assume without loss of generality that ϕ is a prenex conjunction

ϕ := ∃x1, . . . , xk : (

m∧
i=1

ηi ∧
n∧
j=1

Cj)

with k, n ≥ 0 and m ≥ 1, and ηi = (W, αi) with αi ∈ (X ∪ Σ)∗, where
X := {x1, . . . , xk}.

Our goal is to bring the αi into a form where we can easily split off a at
the right side. Hence, we consider all possibilities which variables or terminals
generate the rightmost letter in a word w ∈ L(ϕ). As some variables might be
erased,this is not always the rightmost variable of an ηi. To this end, for each
set N ⊆ X, we define a morphism πN : (X ∪Σ)∗ → (N ∪Σ)∗ by πN (c) := c
for all c ∈ Σ, πN (x) := x for x ∈ N , and πN (x) := ε for x ∈ (X −N). In other
words, πN erases the variables from X −N , and leaves variables from N and
terminals unchanged. For each of these N , we now define a formula

ϕN := ∃ #»xN :
( m∧
i=1

(W = πN (αi)) ∧
n∧
j=1

Cj ∧
∧
x∈N

(x 6= ε) ∧
∧

x∈(X−N)

(x = ε)
)
,

where #»xN contains exactly the variables from N . Some (or all) of these formulas
might not be satisfiable (e. g., when x = ε is forbidden by a constraint on x),
but this is not a problem. We observe that ϕ ≡

∨
∅⊆N⊆X ϕN .

The end goal of the construction is finding formulas ψN with L(ψN ) =
L(ϕN )/a for each set N . As intermediate step, we shall construct formulas χN
with L(χN ) = L(ϕN ) ∩ (Σ∗ · a).

As all remaining variables have to be substituted with non-empty words, we
know that some ϕN can only generate a word that ends on a if every variable
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that is the rightmost symbol of some πN (αi) is substituted with a word that
ends on a. In order to simulate this, we first define the set of these variables as

RN := {x ∈ N | some πN (αi) ends on x}.

We use this to define a morphism sN : (N ∪Σ)∗ → (N ∪Σ∗) by sN (c) := c for
all c ∈ Σ, sN (x) := x for all x ∈ (N −RN ), and sN (x) := x · a for all x ∈ RN .
We use this to define βN,i := sN (πN (αi)) for 1 ≤ i ≤ m. But we also need
adapt the constraints that refer to variables from RN : For each 1 ≤ j ≤ n,
there exist an NFA A and a variable x ∈ X such that Cj = CA(x). If x /∈ RN ,

we define C
/a
j := Cj . On the other hand, if x ∈ RN , let C

/a
j := CA/a

(x), where
A/a is an NFA with L(A/a) = L(A)/a. As the class of regular languages is
closed under /a (proving this is a standard exercise), such an A/a always exists
(and although L(A/a) = ∅ might hold, this simply results in a formula that is
not satisfiable). We combine this to

χN := ∃ #»xN :
( m∧
i=1

(W = βN,i) ∧
n∧
j=1

C
/a
j ∧

∧
x∈(N−RN )

(x 6= ε)
)
.

As we replaced each x ∈ Rn with x · a, we exclude these variables from the

conjunction that requires x 6= ε. Due to our definitions of the βN,i and C
/a
j ,

we know that L(χN ) = L(ϕN ) ∩ (Σ∗ · a) holds.

Now we are ready for the final step, splitting off the a. Our goal is to define
formulas ψN with L(ψN ) = L(ϕN )/a. We distinguish two cases: Firstly, if, for
some N , any of the βN,i is ε or ends on some terminal from Σ − {a}, we know
that L(ϕN ) ∩ (Σ∗ · a) = ∅, which is equivalent to L(ϕN )/a = ∅. Hence, we can
discard this choice of N . To simplify the presentation, we then assume that
ψN is formula that is not satisfiable, like (W = a) ∧ (W = aa).

Otherwise, we know that for this N , each βN,i has to end on a. Thus, for
each 1 ≤ i ≤ m, there exists a well-defined γN,i with γN,i = βN,i · a. We define

ψN := ∃ #»xN :
( m∧
i=1

(W = γN,i) ∧
n∧
j=1

C
/a
j ∧

∧
x∈(N−RN )

(x 6= ε)
)
.

and observe that L(ψN ) = L(χN )/a = L(ϕN )/a. All that remains is to combine
the formulas into a single formula ψ :=

∨
∅⊂N⊆X ψN . As free(ψN ) = {W} for

each N , this is indeed a SpLog-formula. By our previous observations, we can
state L(ψ) =

⋃
L(ψN ) =

⋃
L(ϕN )/a =

(⋃
L(ϕN )

)
/a = L(ϕ)/a. Hence, the

class of SpLog-languages is closed under /a.

The same can be observed for the analogously defined left quotient by a.
We use Lemma 5.7 twice in Section 6.2.
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5.3 Efficient Conversion of vsf-xregex to SpLog

Most modern implementations of regular expressions use a backreference oper-
ator that allows the definition of non-regular languages (see e. g. Freydenberger
and Schmid [18] for more details). This is formalized in xregex (a. k. a. extended
regular expressions, regex, or regular expressions with backreferences), which
extend regex formulas with variable references &x for every x ∈ Ξ. Intuitively,
the semantics of &x can be understood as repeating the last value that was
assigned to x{ }, assuming that the xregex is parsed left to right. We examine
two short examples of xregex languages; more can be found in [5,14,18,41].

Example 5.8 Let α := x{Σ∗} ·&x ·&x and β := x{aa+}(&x)+. Then L(α) is
the language of all www with w ∈ Σ∗, while L(β) is the language of all words
an, such that n ≥ 4 is not a prime number6. �

We give a ref-words based definition of xregex semantics in the following
section. Readers who are satisfied with the informal semantics are invited to
skip to the discussion of the actual result in Section 5.3.2

5.3.1 Xregex Semantics

We define the semantics of xregex using the ref-word approach by Schmid [41]
(for a definition with parse trees, cf. Freydenberger and Holldack [16]).

Recall that the syntax of xregex extends that of regex formulas, by adding
the case &x for all x ∈ Ξ to the recursive definition. We exclude all cases of
variable bindings x{α} where α contains &x or some x{β}.

Likewise, the notion of the ref-language L(α) of an xregex α is obtained by
adding the rule R(&x) = x for all x ∈ Ξ to the definition for regex formulas.

Intuitively, each subword `xw ax, where w does not contain `x or ax,
represents that the value w is bound to the variable x. Every variable in r
that occurs to the right of this subword is now assigned the value w, unless
another binding changes the value of x. More formally, if ux is a prefix of some
ref-word r, this occurrence of x in r is undefined if u does not contain a subword
`xvax. Otherwise, if u1`xu2axu3x is a prefix of r, this occurrence of x refers
to `xu2ax if u3 does not contain `x (hence, it also does not contain ax).

The dereference D(r) of a ref-word r is obtained by first deleting all undefined
occurrences of variables (in other words, these default to ε). Then, we choose
any prefix u1`xu2ax of r for which u2 ∈ Σ∗. We then replace all variables x
that refer to this prefix with u2, and rewrite u1`xu2ax to u1u2. This process
is repeated until we obtain a word from Σ∗ (cf. [18,41] for more information).
Finally, we define L(α) := {D(r) | r ∈ R(α)}.

5.3.2 Converting vsf-xregex

As shown by Fagin et al. [13], core spanners cannot define all xregex languages
(e. g., they cannot express L(β) from Example 5.8, see [16]). But Freydenberger

6 Originally invented by Abigail [1] as a PERL regular expression.
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and Holldack [16] identified a core spanner definable subclass of xregex, the
variable-star-free xregex (short: vsf-xregex ). A vsf-xregex is an xregex that does
not use x{ } or &x inside a Kleene star *. Every vsf-regex can be converted
effectively into a core spanner; but the conversion from [16] can lead to an
exponential blowup. The question whether a more efficient conversion is possible
was left open in [16]. Using SpLog, we answer this positively.

Theorem 5.9 Given a vsf-xregex α, we can compute in polynomial time ϕ ∈
SpLog with L(ϕ) = L(α).

Before we give the actual proof in Section 5.3.3, we discuss some of the con-
sequences of this result. Using Theorem 5.9, it is possible to extend the syntax
of SpLogrx, SpLog, and ECreg by defining constraints with vsf-xregex instead
of classical regular expressions, without affecting the complexity of evaluation
or satisfiability. Naturally, this also allows core spanner representations to use
vsf-xregex (e. g. in the definition of relations).

Theorem 5.9 also shows that, given vsf-xregex α1, . . . , αn, one can decide
in PSPACE whether

⋂
L(αi) = ∅ (by converting each αi into a formula ϕi,

and deciding the satisfiability of
∧
ϕi). This is an interesting contrast to the

full class of xregex, where even the intersection emptiness problem for two
languages is undecidable (cf. Carle and Narendran [5]). An application of this
consequence of Theorem 5.9 can be found in Freydenberger and Schmid [18].

5.3.3 Proof of Theorem 5.9

Let α be a vsf-xregex. We first briefly recall a part of the construction that was
used in [16] to prove that every language that is generated by a vsf-xregex is also
a core spanner language (and, hence, a SpLog-language). There, it is first shown
that every vsf-xregex can be expressed as a finite disjunction of xregex paths,
where an xregex path is a vsf-xregex that is also variable-disjunction free. In
other words, an xregex path is a vsf-xregex α such that for each subexpression
(α1 ∨ α2) of α, neither α1 nor α2 contains any variable bindings or references.
This is proven by a straightforward rewriting, where for a subexpression (α1∨α2)
that contains variable bindings or references is replaced with α1 and α2, yielding
two vsf-xregex. This process is repeated until each resulting vsf-xregex is also
an xregex path. For example, (x{a} ∨ x{b})(y{c} ∨ y{d}) is converted into
the four xregex paths x{a}y{c}, x{a}y{d}, x{b}y{c}, and x{b}y{d}. We also
refer to this replacement process as expanding the variable-disjunctions.

Naturally, this can result in an exponential number of xregex paths. As
we shall see, SpLog can be used to simulate all these xregex paths without
explicitly encoding them one by one.

The main problem that the construction has to overcome is handling
variables that can be bound multiple times, or not at all. For example, consider
the vsf-xregex (x{a} ∨ y{b}) · (x{c} ∨ y{d}) ·&x ·&y. There, it is possible to
bind each variable once, or one twice and the other not at all, resulting in the
words acc, adad, bccb, and bdd (recall that unbound variables default to ε).
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To overcome this, we shall represent each variable x in α with variables x0
to xn(x) in the formula, where n(x) is the highest number of times that x can
be bound to a value (hence, in the most recent example, n(x) = n(y) = 2). For
vsf-xregex, this is always bounded by the total number of bindings for x in α.
To handle these different variables xi, we construct a directed acyclic graph
G(α) from α that allows us to see how often the value of each variable x can
be assigned, and which xi is accessed by an occurrence of a variable reference
&x (further down, we discuss this idea in more details).

We represent α as a tree T (α), where each node v has a label λ(v). If v is
a leave, λ(v) is a regular expressions or a variable references. If v is an inner
node, λ(v) is ∨, ◦, or x{} for some x ∈ Ξ. More specifically, if α is a regular
expression or an x ∈ Ξ, T (α) consists of one node with label α. If α = (α1 ·α2),
the root of T (α) is labeled with ◦, and it has T (α1) and T (α2) as left and right
subtree, respectively. Likewise, if α = (α1 ∨ α2), the root of T (α) is labeled
with ∨, and T (α1) and T (α2) are left and right subtree, respectively. Finally,
if α = x{β}, the root of T (α) is labeled with x{}, and its only subtree is T (β).

We now use T (α) to construct a directed acyclic graph G(α). In order to do
so, for every node v of T (α), we recursively define the directed acyclic graph
G(v) with and a function snk(v) as follows:

– If lab(v) is a regular expression or a variable reference, let G(v) := (V,E)
with V := {v} and E := ∅, and define snk(v) := v.

– If lab(v) = x{}, let u denote the only child of v, and let (Vu, Eu) := G(u).
Let v̂ be an unlabeled new node, and define snk(v) = v̂. Then G(v) := (V,E),
with V := {v, v̂} ∪ Vu and E := Eu ∪ {(v, u), (snk(u), v̂)}.

– If lab(v) ∈ {◦,∨}, let ul and ur denote the left and right child of v, re-
spectively. Let (Vl, El) := G(ul) and (Vr, Er) := G(ur), and ensure that
(Vl ∩ Vr) = ∅. Let v̂ be an unlabeled new node, and define snk(v) = v̂ and
V := {v, v̂} ∪ Vl ∪ VR. Furthermore:
– If lab(v) = ◦, E := El ∪ Er ∪ {(v, ul), (snk(ul), ur), (snk(ur), v̂)}.
– If lab(v) = ∨, E := El ∪ Er ∪ {(v, u), (snk(u), v̂) | u ∈ {ul, ur}}.

We use G(α) to denote G(rt), where rt is the root of T (α).
Now each path in G(α) from rt to snk(rt) corresponds to an xregex path

that can be derived from α when expanding the variable-disjunctions. This is
due to the following reasoning: The process of expanding can be understood
as processing T (α) top down. If one encounters a disjunction that contains
variable bindings or references, one chooses a side of the disjunction, and
discards the other. The obtained xregex path corresponds exactly to the path
through G(α) that passes from the nodes of the chosen sides to their snk-nodes
(over and all other appropriate nodes in between).

An example for T (α) and the construction of G(α) can be found in Figure 4.

For every node v of G(α) and every x ∈ Ξ, we now define mb(x, v) as the
maximal number of nodes with label x{} that can appear on a path from rt to
v (not including the label of v). Intuitively, mb(x, v) determines the maximal
number of times that a new value can be assigned to x along the path to v.
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Moreover, if lab(v) = x{}, and mb(x, snk(v)) = i, we know x has been bound
at most i − 1 times before this binding, which is why we can represent this
binding of x with the variable xi in the formula. We also know that there is a
path in G(α), and hence a corresponding xregex path, where this is exactly
the i-th binding of x. Recall that by definition, for each subexpression x{β},
we have that β contains neither x{} nor &x. For an example, see Figure 5.

Furthermore, for each node, mb can be computed in polynomial time. One
way of doing this is using a longest path algorithm (where the edges to nodes
with label x{} have weight 1, and all others have weigth 0), which can be
solved in time O(|V |+ |E|), cf. Sedgewick and Wayne [42].

The main idea of the construction is that every occurrence of &x (in some
node v) is represented by a variable xi with i = mb(x, v). To make this work,
the formula “fills up” missing variable bindings. More formally, assume that
for some x ∈ X, a disjunction has children u and v with i := mb(u, x) and
j := mb(v, x), such that i > j. The formula then extends the subformula for v
with assignments xj+1 = xj , xj+2 = xj up to xi = xj .

For every node v of T (α), we define a SpLog-formula ϕv. Each of these
ϕv has a characteristic free variable yv that represents the part of W that is
created by the sub-xregex that is represented by v. We now define the formulas:

– If lab(v) is a regular expression, we define ϕv := (yv v W) ∧ Clab(v)(yv).
This expresses that yv has to be mapped to a word in L(lab(v)), and needs
no further explanation.

– If lab(v) = &x, let ϕv := (yv = xmb(x,v)). This expresses that yv has to be
mapped to the same value as xi, which is supposed to contain the most
recent binding of x (this shall be ensured by the formulas for conjunctions
further down).

– If lab(v) = x{}, let u denote the child of v in T (α), and define

ϕv := ∃yu : (yv = yu) ∧ (xmb(x,snk(v)) = yu).

As explained above, if i := mb(x, snk(v)), then x was bound at most i− 1
times before the most recent binding. Hence, we store the most current
value of x in xi. The task of generating the word that is represented by yv
is then delegated to yu.

– If lab(v) = ◦, let ul and ur to denote the left and the right child of v in
T (α). We define

ϕv := ∃yul
, yur

:
(
(yv = yul

· yur
) ∧ ϕul

∧ ϕur

)
.

This is also straightforward: yv is a concatenation of yul
and yur , and these

words are handled by the respective subformulas.
– If lab(v) = ∨, use u1 and u2 to denote the children of v in T (α), without

any particular regard to which is left or right. We define

X := {xi | x ∈ var(α), 0 ≤ i ≤ mb(x, snk(rt))},
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Fig. 4 In black: The tree T (α) for the example α := ((x{a}∨y{b}) ·(x{c}∨y{d})) ·(&x ·&y)
from the proof of Theorem 5.9. In red: The edges and the snk-nodes of G(α). Recall that each
node of T (α) is also a node of G(α). There are four different paths from the root to its sink.
Each of these paths corresponds to one of the xregex paths x{a}x{c}&x&y, x{a}y{d}&x&y,
y{b}x{c}&x&y, and y{b}y{d}&x&y that result from expanding the variable-disjunctions
in α.
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Fig. 5 The graph G(α) for the example from Figure 4. The numbers indicate the value
mb(x, v), where v is the respective node. In order to use this example for the values for
mb(y, v), the numbers that are marked in red have to be changed: From left to right, 1, 0, 2,
1 are replaced with 0, 1, 1, 2, respectively. For all other nodes, mb(x, v) = mb(y, v) holds.
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and also mx
l := mb(x, snk(ul)) for l ∈ {1, 2}, and use this for the following

formula:

ϕv :=

(
∃yu1

: (yv = yu1
) ∧ ϕu1

∧
∧
xi∈X

(xi vW ) ∧
∧

x∈var(α),
mx

1<i≤m
x
2

(xi = xmx
1
)

)

∨
(
∃yu2 : (yv = yu2) ∧ ϕu2 ∧

∧
xi∈X

(xi vW ) ∧
∧

x∈var(α),
mx

2<i≤m
x
1

(xi = xmx
2
)

)

This formula consists of two almost identical subformulas, which we now
examine from left to right: First, the subformula states that yv is determined
by yul

with l ∈ {1, 2}, and delegates the task of determining yul
to ϕul

.
Next, the conjunction

∧
xi∈X(xi v W ) ensures that the formula is safe.

Finally, the last part of the formula realizes the aforementioned “filling up”.
Assume that l = 1 and i < j, where i := mx

1 and j := mx
2 for some x. Then

ϕu1
defines xi+1 = xi, xi+2 = xi up to xj = xi.

The last step of the construction is extending ϕrt to the formula

ϕ := ∃yrt,
#»x :
(
(W = yrt) ∧ ϕrt ∧

∧
x∈var(α)

(x0 = ε)
)
,

where #»x is any ordering of {x0 | x ∈ var(α)}. As mentioned above, mb can
be computed in time that is polynomial in the size of α; hence, ϕ can be
constructed in polynomial time. All that remains is proving L(ϕ) = L(α).

For both directions of this claim, we observe the following invariant: If v is
a node of T (α) with lab(v) = ∨, and i := mb(x, v) and j := mb(x, snk(v)), then
ϕv assigns exactly the variables xl with i < l ≤ j. Each of these assignments
can happen either through an equation xl = yu (due to a variable binding x{}),
or due to some xl = xl̂ with i ≤ l̂ < l (from the disjunction at v, or from a
disjunction in a subexpression of that disjunction).

Now, for each w ∈ L(α), there is an xregex path α̂ that is obtained from α
by expanding the variable-disjunctions, and w ∈ L(α̂). As mentioned above, α̂
corresponds to a path in G(α) from rt to snk(rt), which is equivalent to a choice
of disjunctions in ϕ. For every variable reference &x in α̂, the corresponding
formula uses a variable xi, where xi = xj holds, and j is the number of the
most recent binding for x (in particular, if x has never been bound, it defaults
to x0 = ε). Hence, w ∈ L(ϕ) holds. Likewise, if w ∈ L(ϕ), we can follow the
corresponding σ |= ϕ with σ(W) = w along the structure of ϕ, updating the
substitution whenever we encounter an existential quantifier. Whenever we
encounter a disjunction, there is at least one side where the current substitution
is satisfied. That side corresponds to a node in T (α), and we can use this to
construct the respective path in G(α). This concludes the proof of Theorem 5.9.
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6 Limitations of SpLog

While Section 5 discusses various aspects of expressing languages and relations
in SpLog, the present section focuses on what SpLog cannot express. Its main
part is Section 6.1, where we adapt an inexpressibility result for EC to SpLog.
In addition to this, Section 6.2 discusses separating JSpLogK and JECregK.

6.1 From EC-Inexpressibility to Non-Selectability for SpLog

In Section 5.1, we defined the notion of SpLog-selectable relations, and examined
various relations that are selectable. Our next topic is the opposite: Showing
that a relation cannot be selected with SpLog. For this, we shall frequently
use the SpLog-inexpressibility of appropriate languages (we defined the notion
of SpLog-languages in Section 5.2 – recall in particular that these are defined
via the main variable of the formulas). Hence, general tools for language
inexpressibility (like a pumping lemma) would be very convenient. Up to now,
the only (somewhat) general technique for core spanner inexpressibility was
given in [16], where it was observed that on unary alphabets, core spanners
can only define semi-linear (and, hence, regular) languages. Due to the limited
applicability of this result, this left a need for further inexpressibility techniques.
As SpLog is a fragment of ECreg, it is natural to ask whether this connection
can be used to obtain inexpressibility results.

Karhumäki, Mignosi, and Plandowski [30] developed multiple inexpress-
ibility techniques for EC. Sadly, EC-inexpressibility does not imply SpLog-
inexpressibility: For example, if Σ ⊇ {a, b, c}, one can use the techniques
from [30] to show that even the regular language {a, b}∗ is not EC-expressible,
although it is obviously SpLog-expressible (like every regular language). On the
other hand, while ECreg-inexpressibility results would be useful, to the author’s
knowledge, the only result that can be used for this is from Ciobanu, Diekert
and Elder [7], namely that every ECreg-language is an EDT0L-language. In
principle, this allows us to use EDT0L-inexpressibility results (of which there
are only few; e. g. Ehrenfeucht and Rozenberg [12]), but the comparatively
large expressive power of EDT0L limits the usefulness of this approach7.

But as we shall see, developing a sufficient criterion for EC-expressible
SpLog-languages allows us to use one of the techniques from [30] for SpLog.
We begin with a definition: A language L ⊆ Σ∗ is bounded if there exist
words w1, w2, . . . , wn ∈ Σ+, n ≥ 1, such that L ⊆ w∗1w

∗
2 · · ·w∗n. Combining

a characterization of the class of bounded regular languages (Ginsburg and
Spanier [23]) with observations on EC from [30] yields the following.

Lemma 6.1 Every bounded regular language is an EC-language.

7 A short language theoretic digression that provides a little more context: Every EDT0L-
language is an ET0L-language, hence an indexed language (cf. Kari, Rozenberg, and Sa-
lomaa [33]), and thereby a context-sensitive language (cf. Mateescu and Salomaa [36]).
Although these larger classes haven been studied more intensively than EDT0L, their even
larger expressive power makes their inexpressiblity results even less useful for our purposes.
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Proof. We base our proof on Theorem 1.1 from [23], which states that the
class of bounded regular languages is exactly the smallest class that contains
all finite languages, all languages w∗ with w ∈ Σ∗, and is closed under finite
union and concatenation.

As the class of EC-languages is closed under finite union by definition,
every finite language is an EC-language. Closure under concatenation is also
straightforward. Finally, as shown in Theorem 5 in [30], for every w ∈ Σ∗, w∗ is
an EC-language. Hence, every bounded regular languages is an EC-language.

Theorem 6.2 Every bounded SpLog-language is an EC-language.

Proof. Let ϕ ∈ SpLog(W) such that L(ϕ) is bounded. Hence, L(ϕ) ⊆ B for
some B := w∗1 · · ·w∗k, with k ≥ 1 and w1, . . . , wk ∈ Σ∗.

Our goal is to show that each constraint CA(x) in ϕ can be replaced
with bounded regular language Lv. Then, Lemma 6.1 states there exists an
EC-formula ϕA with L(ϕA) = Lv; which means that we can replace each
CA(x) with ϕA(x) without changing the language (these replacements are
non-constructive, as we only state the existence of B).

To this end, consider any constraint CA(x) in ϕ, together with a substitution
σ that is obtained from a substitution σ̂ |= ϕ. As ϕ may contain existential
quantifiers, we do not consider σ̂ directly, but we observe that σ(W) = σ̂(W)
must hold. Furthermore, we have σ(W) ∈ B, as L(ϕ) ⊆ B.

As ϕ is a SpLog(W)-formula, σ(x) v σ(W), which implies σ(x) ∈ Bv,
where Bv := {u | u v v for some v ∈ B}. Hence, σ(x) ∈ Lv, where we define
Lv := L(Av) ∩Bv. Less formally, we observe that the constraint CA does not
actually use all of L(A), but just the words from Lv. All that remains to be
shown is that this language is bounded regular, as then Lemma 6.1 applies.

Observe that B is a regular language; and as the class of regular languages
is closed under taking the set of all subwords (a common exercise), this means
that Bv is regular as well. The class of regular languages is also closed under
intersection; thus, Lv is regular. It is also bounded, as every set of subwords
of a bounded language is bounded (Lemma 5.1.1 in Ginsburg [22]).

The intuition behind this is very simple: In SpLog, every variable is a
subword of the main variable. Hence, if the formula defines a bounded language,
the constraints of the variables also have to “fit into” the bounded language,
which means that they can be replaced with a bounded regular language, which
is an EC-language (due to Lemma 6.1). This reasoning does not generalize to
ECreg, as that logic does not restrict variables to subwords (hence, the variables
do not inherit the boundedness of the language).

The EC-inexpressibility technique from [30] that we are going to use is
based on the following definition by Karhumäki, Plandowski, and Rytter [31].

Definition 6.3 A word w ∈ Σ+ is imprimitive if there exist a word u ∈ Σ+

and n ≥ 2 with w = un. Otherwise, w is primitive. For a primitive word Q, the
FQ-factorization of w ∈ Σ∗ is the factorization w = w0 ·Qx1 · w1 · · ·Qxk · wk
that satisfies the following conditions:
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1. Q2 6v wi for all 0 ≤ i ≤ k,
2. Q is a proper suffix of w0, or w0 = ε,
3. Q is a proper prefix of wk, or wk = ε,
4. Q is a proper prefix and a proper suffix of wi for all 0 < i < k.

Finally, we define expQ(w) := max(TQ(w) ∪ {0}), where

TQ(w) := {x | Qx occurs in the FQ-factorization of w}.

For every primitive word Q, the FQ-factorization of every word w and
expQ(w) are uniquely defined (cf. [30,31]). We use this definition in the following
pumping result for EC.

Theorem 6.4 (Karhumäki et al. [30]) For every EC-language L and every
primitive word Q, there exists k ≥ 0 such that, for each w ∈ L with expQ(w) >
k, there is a word u ∈ L with expQ(u) ≤ k which is obtained from w by
removing some occurrences of Q.

Combining this with Theorem 6.2, we immediately obtain the following
pumping result for SpLog (and, hence, core spanners).

Theorem 6.5 For every bounded SpLog-language L and every primitive word Q,
there exists k ≥ 0 such that, for each w ∈ L with expQ(w) > k, there is a
word u ∈ L with expQ(u) ≤ k which is obtained from w by removing some
occurrences of Q.

Example 6.6 As shown by Fagin et al. [13] (Theorem 4.21), Lel := {aibi | i ≥ 0}
is not expressible with core spanners. The length of this proof is roughly one
page in the style of Journal of the ACM.

Contrast this to the following: Assume that Lel is a SpLog-language. Choose
the primitive word Q := a. Then there exists k ≥ 0 that satisfies Theorem 6.5.
Choose w := ak+2bk+2, and observe that expQ(w) = k+ 1 > k, which is due to

the factorization w = ε·ak+1 ·abk+2. Hence there exists a word u = ak+2−jbk+2,
j > 0, with u ∈ Lel. As k + 2− j < k + 2, this is a contradiction. �

From the inexpressibility of Lel, Fagin et al. then conclude that the equal
length relation Rel = {(u, v) | |u| = |v|} is not selectable with core spanners.
Expressed with SpLog instead of spanners, the argument is that otherwise,
L(ϕ) = Lel for ϕ(W) := ∃x, y : (W = xy ∧ Ca∗(x) ∧ Cb∗(y) ∧Rel(x, y)).

Note that Karhumäki et al. [30] and Ilie [28] use the same approach (show
the non-selectability of a relation by proving that a suitable language is not
expressible) to show that Rel and various other relations are not selectable
with EC (in particular, they also use Lel and Theorem 6.4 for Rel). Before we
use this technique to prove that some other relations are not SpLog-selectable,
we introduce a few more definitions: For every word w ∈ Σ∗, its reversal wR

is the word that is obtained by reading w from right to left. For x, y ∈ Σ∗,
we say that x is a scattered subword of y if there exist k ≥ 1 and words
x1, . . . , xk, y0, . . . yk ∈ Σ∗ such that x = x1 · · ·xk and y = y0(x1y1) · · · (xkyk).
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Proposition 6.7 Consider the following binary relations over Σ∗:

Rscatt := {(u, v) | u is a scattered subword of v},
Rnum(a) := {(u, v) | |u|a = |v|a} for a ∈ Σ,
Rpermut := {(u, v) | |u|a = |v|a for all a ∈ Σ},
Rrev := {(u, v) | v = uR},
R< := {(u, v) | |u| < |v|}.

None of these relations is SpLog-selectable.

Proof. The proof follows the same outline as Example 6.6: We first define three
languages L1 to L3, each of which is shown not to be a SpLog-language. For
each relation, we then show that SpLog-selectability of this relation implies
Li ∈ L(SpLog) for some i. We choose distinct a, b,∈ Σ, and define

L1 := {aibj | 0 ≤ i ≤ j},
L2 := {ai(ba)j | 0 ≤ i ≤ j},
L3 := {(abaabb)i(bbaaba)i | i ≥ 0}.

Each of these three languages is bounded. Hence, we can use Theorem 6.5 to
show that they are not SpLog-languages.

ad L1: This proof is almost identical to the example: Assume that L1 is a
SpLog-language, and choose Q1 := b. Then there exists some k1 that satisfies
Theorem 6.5. Let w1 := ak1+2bk1+2, and observe the FQ1

-factorization w1 =
ak+2b · bk+1 · ε. Hence, expQ1

(w1) = k + 1 > k, and there exists an u =

ak1+2bk1+2−j with j > 0 and u ∈ L1. As k1 + 2 > k1 + 2− j, we observe the
contradiction u1 /∈ L1. Therefore, L1 /∈ L(SpLog).

ad L2: The proof proceeds as for L1, by choosing Q2 := ba, w2 = ak+2(ba)k+2,
and observing the FQ2

-factorization w2 = ak+2ba · (ba)k+1 · ε.

ad L3: Assume that L3 is a SpLog-language, and choose Q3 := abaabb. Let k3
be the constant from Theorem 6.5, and choose w3 := (abaabb)k3+2(bbaaba)k3+2.
The FQ3-factorization is w3 = ε · (abaabb)k3+1 · abaabb(bbaaba)k3+2; hence,
expQ3

(w3) = k3 + 1. By Theorem 6.5, there is some j > 0 such that u3 ∈ L3

for u3 := (abaabb)k3+2−j(bbaaba)k3+2. Contradiction. Thus, L3 /∈ L(SpLog).

Using the languages: Assume some relation R out of Rscatt, Rnum(a), Rpermut,
Rrev, and R< is selected by ϕR(W;x, y) ∈ SpLog. We then define:

ϕ1(W) := ∃x, y : (W = x · y) ∧ Ca∗(x) ∧ C(ba)∗(y) ∧ ϕRscatt(W;x, y),

ϕ2(W) := ∃x, y : (W = x · y) ∧ C(abaabb)∗(x) ∧ C(bbaaba)∗(y) ∧ ϕRnum(a)
(W;x, y),

ϕ3(W) := ∃x, y : (W = x · y) ∧ C(abaabb)∗(x) ∧ C(bbaaba)∗(y) ∧ ϕRpermut(W;x, y),

ϕ4(W) := ∃x, y : (W = x · y) ∧ C(abaabb)∗(x) ∧ C(bbaaba)∗(y) ∧ ϕRrev (W;x, y),

ϕ5(W) := ∃x, y : (W = x · y) ∧ Ca∗(x) ∧ Cb∗(y) ∧ ϕR<
(W;x, y).
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Now observe that L(ϕ1) = L2, L(ϕ2) = L(ϕ3) = L(ϕ4) = L3, and L(ϕ5) = L1.
Hence, if one of these relations is SpLog-selectable, the corresponding language
is a SpLog-language, which contradicts our previous observations.

To our inconvenience, the restriction to bounded languages limits the
applicability of this approach. For example, Ilie [28] shows that over a two
letter alphabet, the language of square-free words (i. e., words that contain no
subword xx with x 6= ε) is not an EC-language. Although one might conjecture
that it is also not a SpLog-language, one can easily see that every bounded
subset of this language has to be finite, which means that our technique fails.

Furthermore, consider the relation Rpow := {(x, xn) | x ∈ Σ∗, n ≥ 1}. It
was already conjectured in [16] that Rpow is not SpLog-selectable; but there is
no suitable bounded language that could be used to prove this.

Another example where this approach fails is the uniform-0-chunk lan-
guage Luzc := L(αuzc), which is defined through the xregex (see Section 5.3)
αuzc := 1+x{0∗}(1+&x)∗1+. Intuitively, in every word of Luzc, all 0-chunks
(maximal subwords from 0∗) have the same length. This language was used
in [13] to prove that the relation 6v is not selectable with core spanners. Clearly,
Luzc is not bounded, and intersecting it with a bounded languages limits us
to a bounded number of 0-chunks in every word, or to 0-chunks of a bounded
length (thus obtaining a regular language). Hence, this approach fails for Luzc.

6.2 Comparing the Power of SpLog and ECreg

A question that remains open in this paper is whether JECregK = JSpLogK.
We briefly address some aspects of an open subproblem, namely whether
L(ECreg) = L(SpLog). While one might conjecture that ECreg is more powerful,
our proof that the class of SpLog-languages is closed under right quotient /a
(Lemma 5.7) serves as an example of where SpLog replicates behavior of ECreg;
although with significant extra effort.

The right quotient /a can be seen as a variant of the prefix operator, but
closure under the latter is more complicated than for the former. In fact, the
question whether L(SpLog) is closed under the prefix operator is inherently
related to the question whether SpLog and ECreg can define the same languages.

Proposition 6.8 L(ECreg) = L(SpLog) if and only if L(SpLog) is closed under
the prefix operator.

Proof. For the “only if”-direction, assume L(ECreg) = L(SpLog), and choose
any L(ϕ) ∈ L(SpLog). We then define ψ(x) := ∃y, z : ((y = xz) ∧ ϕ(y)). Then
L(ψ) = {x | x is prefix of some y ∈ L(ϕ)}. This shows that the language of all
prefixes of words from L(ϕ) is an ECreg-language. As we assumed L(ECreg) =
L(SpLog), it is also a SpLog-language.

For the “if”-direction, assume that L(SpLog) is closed under the prefix
operator, and choose any L(ϕ) ∈ L(ECreg). Assume that free(ϕ) = {x}. As
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explained by Diekert [10] (also see the remark at the end of Section 2.1), ϕ can
be converted into an equivalent ECreg-formula χ = ∃ #»y : (η ∧ C) where #»y is a
sequence of variables, and C is a conjunction of constraints.

Now, let $ be a new terminal letter, let W be a new variable that does not
occur in χ, and define ψ := ∃ #»y : ((W = x$ηL)∧ (W = x$ηR)∧C). Then ψ is a
SpLog(W)-formula, and L(ψ) = {σ(x)$σ(ηL) | σ |= ϕ}. Now, let

L1 := {u | there is a word v ∈ (Σ ∪ {$})∗ with uv ∈ L(ψ)},
L2 := L1 ∩ (Σ∗ · $),

L3 := L2/$.

Now, L1 is the result of applying the prefix operator to the SpLog-language L(ψ);
which means that L1 is a SpLog-language due to our initial assumption. As
SpLog-languages are closed under intersection with regular languages (by simply
adding the corresponding regular constraint), L2 is a SpLog-language; and so
is L3 (due to Lemma 5.7). We conclude L3 = {σ(x) | σ |= χ} = L(χ) = L(ϕ).
Hence, L(ϕ) ∈ L(SpLog).

To avoid potential confusion, recall that although we showed in Example 5.3
that the prefix relation is SpLog-selectable, this does not mean that we can
use this to turn a SpLog-formula for some language L into a formula for the
language of all prefixes of L.

In principle, Proposition 6.8 could offer an elegant way of (dis-)proving
L(SpLog) = L(ECreg) by (dis-)proving that the former class is closed under the
prefix operator. In practice, this seems to be more of indicator that (dis-)proving
closure under the prefix operator is hard.

The question whether L(SpLog) = L(ECreg) seems to be surprisingly com-
plicated; even when only considering only word equations without constraints:
We only discuss this briefly, as a deeper examination would require considerable
additional notation. In contrast to EC and ECreg, SpLog can only use variables
that are subwords of the main variable. Hence, one might expect that it is easy
to construct an EC-formula where other variables are necessary. But as it turns
out, many word equations can be rewritten to reduce the number of variables.
In particular, there is a notion of word equations where the solution set can
be parameterized (i. e., expressed with a finite number of so-called parametric
words – for more details, see e. g. Czeizler [9], Karhumäki and Saarela [32]).
In all cases that the author considered, it turned out that one could use these
parametrizations to construct SpLog-formulas. Similarly, the solution sets of
non-parametrizable equations that the author examined, like xaby = ybax,
are self-similar in a way that allows the construction of SpLog-formulas (cf.
Czeizler [9], Ilie and Plandowski [29]). On the other hand, these constructions
do not appear to generalize straightforwardly to an equivalence proof.

We conclude this section with a consequence that L(ECreg) 6= L(SpLog)
would have. To prove this, we combine Lemma 5.7 with the following result
that is commonly known as Greibach’s Theorem (originally from Greibach [24],
this formulation is Theorem 8.14 in Hopcroft and Ullman [27]).
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Greibach’s Theorem. Let C be a class of languages that is effectively closed
under concatenation with regular sets and union, and for which “= Σ∗” is
undecidable for any sufficiently large fixed Σ. Let P be any non-trivial property
that is true for all regular languages and that is preserved under /a, where
a ∈ Σ. Then P is undecidable for C.

Proposition 6.9 Assume L(ECreg) 6= L(SpLog). Given ϕ ∈ ECreg, it is unde-
cidable whether L(ϕ) ∈ L(SpLog) .

Proof. Assume that L(ECreg) 6= L(SpLog). To use Greibach’s Theorem, we
choose the class of ECreg-languages for C, the property “L is a SpLog-language”
for P . We discuss the conditions of Greibach’s Theorem step by step: The class
of SpLog-languages is effectively closed under concatenation and union: Given
ϕ1, ϕ2 ∈ ECreg, we have L(ϕ1∨ϕ2) = L(ϕ1)∪L(ϕ2) and L(ϕc) = L(ϕ1) ·L(ϕ2)
for ϕc := ∃u, v : (mv = u · v) ∧ ϕ1(u) ∧ ϕ2(v). Recall that ECreg includes all
regular languages, which gives us effective closure under concatenation with
regular languages.

If |Σ| ≥ 2, then L(ϕ) = Σ∗ is undecidable when given ϕ ∈ ECreg as input:
This follows (even for ϕ ∈ SpLog) for example from Theorem 5.9 and the
undecidability of this problem for vsf-xregex (see [14]). An alternative proof is
discussed in Section 7.4.

Next, P is a non-trivial property: The class of SpLog-languages is not
empty, and L(SpLog) 6= L(SpLog) holds by our assumption. Every regular
language is also a SpLog-language, and L(SpLog) is closed under /a according
to Lemma 5.7. Hence, if L(ECreg) 6= L(SpLog), Greibach’s Theorem applies;
which means that L(ϕ) ∈ L(SpLog) is undecidable for ϕ ∈ SpLog.

7 Conjunctive Path Queries on Marked Paths

In this section, we examine the connection between SpLog and a querying lan-
guage for graphs, namely unions of conjunctive regular path queries (UCRPQs)
that are extended with string equalities. In the conference version [15] of this
paper, this section was a short paragraph that mostly consisted of the follow-
ing claim: “Using our methods, it is easy to show that there are polynomial
time transformations between CRPQ= and SpLog prenex conjunctions, and
between UCRPQ= and DPCNF.” (Recall that we defined prenex conjunctions
and DPC-normal form in Section 5.2.)

But this claim was overly optimistic. In fact, if taken literally, it is wrong;
although we shall see that it holds for a rich and natural class of restricted
queries. But explaining this adequately requires further definitions, and the
author apologizes to the reader for burdening them with even more notation.

This section is structured as follows: First, we introduce UCRPQs in
Section 7.1. We then discuss the notion of marked paths, and how graph
queries on marked paths connect to SpLog in Section 7.2. Finally, Section 7.3
states the transformations between these queries and SpLog, and Section 7.4
briefly discusses how this can be used to extend previous undecidability results.
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7.1 Conjunctive Regular Path Queries with Equality

We begin with the definition of the data model. Let ∆ be a terminal alphabet.
A ∆-labeled db-graph is a directed graph G = (V,E), where V is a finite set
of nodes, and E ⊆ V ×∆ × V is a finite set of edges with labels from ∆. A
path p between two nodes v0, vn ∈ G with n ≥ 1 is a sequence

p = (v0, a1, v1)(v1, a2, v2) · · · (vn−1, an, vn)

of edges (vi−1, ai, vi) ∈ E, and we define its label lab(p) := a1a2 · · · an as the
word that is formed by the labels along the edges of p. We also define the
empty path (v, ε, v) for every v ∈ V , with lab(v, ε, v) = ε.

A regular path query (RPQ) is a query of the form ϕ(x, y) = (x, L, y), where
the variables x and y range over nodes, and L is a regular language; and JϕK(G)
contains exactly those pairs of nodes (x, y) for which there is a path p from x to
y in G such that lab(p) ∈ L. By considering conjunctions of RPQs, one obtains
conjunctive regular path queries (CRPQs). Barceló, Libkin, Lin, and Wood [2]
introduced extended regular path queries (ECRPQs), which extend CRPQs by
allowing comparisons of path labels via regular relations, like string equality
and the equal lengths relation. In this paper, we follow Fagin et al. [13], by
considering a class of queries between CRPQ and ECRPQ, namely conjunctive
regular queries with string equality predicates.

The following definition of these queries is based on the definition of
ECRPQs by Barceló et al. [2].

Definition 7.1 A conjunctive regular path query with string equalities (equality
CRPQ) over the alphabet ∆ is a formula

ϕ( #»z f ) = ∃ #»z b :
∧

1≤i≤m

(xi, πi : Li, yi) ∧
∧

1≤j≤n

(ξLj = ξRj )

such that m ≥ 1, n ≥ 0, and

1. all x1, . . . , xm and y1, . . . , ym are node variables (and not necessarily dis-
tinct); the set of these variables is denoted by NVars (ϕ),

2. π1, . . . , πm are pairwise distinct path variables, the set of these is denoted
by PVars (ϕ),

3. the Li are regular languages over ∆ that are defined by NFAs or regular
expressions, and we call Li the range of πi,

4. the ξLj and ξRj are path variables from PVars (ϕ),
5. #»z f is a tuple of variables from NVars (ϕ); these are the free variables of ϕ,

and their set is denoted by free(ϕ),
6. #»z b is a tuple that contains exactly the variables of NVars (ϕ)− free(ϕ).

We use CRPQ= to denote the class of all equality CRPQs, and CRPQ=
rx to

denote the subclass of that defines all Lj only by using regular expressions.
For every ∆-labeled db-graph G = (V,E) and every mapping τ : free(ϕ)→

V , we define that (τ,G) |= ϕ if there exist a mapping τ ′ from NVars (ϕ) to V
and a mapping µ from PVars (ϕ) to paths in G such that:
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1. τ ′(x) = τ(x) for all x ∈ free(ϕ),
2. µ(πi) is a path from τ ′(xi) to τ ′(yi) for all 1 ≤ i ≤ m,
3. lab(µ(πi)) ∈ Li for all 1 ≤ i ≤ m,
4. lab(µ(ξLj )) = lab(µ(ξRj )) for all 1 ≤ j ≤ n.

Based on this, we define JϕK(G) as the set of all τ with (τ,G) |= ϕ.

Intuitively, all variables are quantified existentially, and the words formed
by the labels along the paths have to belong to the respective languages or
satisfy the respective string equalities.

An important difference between Definition 7.1 and the definition of ECR-
PQs from Barceló et al. [2] is that we assume that all path variables are
bound. We shall only consider path queries on very restricted graphs, where
all paths are uniquely identified by their first and last node. This allows us to
streamline the definition. We also use the shorthand notation (x, L, y) instead
of (x, π : L, y), if π is not used in any equality check.

Example 7.2 Consider the following equality CRPQ:

ϕ(x, y) := ∃z1, z2 :

(x, π1 : (aa)+, z1) ∧ (z1, b, z2) ∧ (z2, π3 : (aaa)+, y) ∧ (π1 = π3).

Then for every db-grap G, we have that JϕK(G) contains exactly those pairs of
nodes (x, y) of G for which there exists a path π from x to y such that lab(π)
is from the language a6iba6i, i ≥ 1. Nodes and edges may occur multiple times
along π. �

Another model that was examined by Fagin et al. [13] are unions of
equality CRPQs (short: equality UCRPQs). An equality UCRPQ is a formula

ϕ =
∨k
i=1 ϕi, where ϕi ∈ CRPQ= for all 1 ≤ i ≤ k, and all ϕi have the same

free variables. Consequently, we define JϕK(G) :=
⋃k
i=1JϕiK(G); and we use

UCRPQ= to denote the class of all equality UCRPQs, and UCRPQ=
rx for the

subclass that defines ranges only with regular expressions.

7.2 Marked Paths

Obviously, any attempt to compare SpLog (or spanners) with path queries
must overcome the basic problem that the former query strings, while the
latter query graphs. As a solution, Fagin et al. [13] proposed that the input of
the path queries is restricted to marked paths. The marked path for a word
w = a1 · · · an with n ≥ 0 is the db-graph Gwmp over the extended alphabet
∆ := Σ ∪ {., /} that consists of the nodes 1 to n+ 1, and an edges with label
ai from i to i + 1 for each 1 ≤ i ≤ n. Furthermore, there is a loop with the
special symbol . on the node 1, and a loop with the special symbol / on the
node n+ 1. This is depicted in the following illustration:



62 D. D. Freydenberger

1 2 3 n− 1 n n+ 1

a1 a2 an−1 an
. /

Fagin et al. [13] point out that the markings can be used to identify the first and
last node of the marked path using the RPQs (x, ., x) and (x, /, x), respectively.

As shown in [13], every core spanner on input w can be expressed by an
equality UCRPQ on the marked path Gwmp, by using two node variables x` and

xa for every span variable x. These variables represent the start and the end of
the span, and every node assignment τ translates into the span [τ(x`), τ(xa)〉.

Likewise, [13] showed that every equality UCRPQ that expresses a span in
this way can also be transformed into an equivalent core spanner representation.
The transformations were not considered with respect to their complexity, but
as we shall prove, some are impossible in polynomial time (unless P = NP).

But first, note that using SpLog as a framework allows us to define a more
convenient notion of “simulating a path query”, as we can represent each node i
on a marked path Gwmp in SpLog as the prefix of w that has length i. This is
used in the following definition.

Definition 7.3 Let ϕ ∈ UCRPQ= and ψ ∈ SpLog(W) with free(ϕ) = free(ψ)−
{W}. We say that ψ realizes ϕ (on marked paths) if for all w ∈ Σ∗, we have
σ ∈ JψK(w) if and only if τ ∈ JϕK(Gwmp) with w[1,τ(x)〉 = σ(x) for all x ∈ free(ϕ).

Building on this definition, we can compare arbitrary equality UCRPQs
on marked paths to SpLog, instead of being restricted to those that simulate
spanners (this notion also extends to any type of query that maps db-graphs
to sets of node assignments, but this is outside the scope of the present paper).

For the other direction, we combine Definition 4.7 with the encoding of
spanners in path queries from [13] that was mentioned above.

Definition 7.4 Let ϕ ∈ SpLog(W) and ψ ∈ UCRPQ= with

free(ψ) = {x`, xa | x ∈ (free(ϕ)− {W})}.

Then ψ realizes ϕ if, for all w ∈ Σ∗ and all substitutions σ, we have τ ∈ JψK(Gwmp)
if and only if σ ∈ JϕK(w) with σ(x) = w[τ(x`),τ(xa)〉 for all x ∈ free(ψ).

With these definitions, we can directly adapt the notion of polynomial time
conversions (recall Section 4.1) to queries on marked paths.

Our next step is proving that equality UCRPQs on marked paths are too
powerful to allow polynomial time transformations to SpLog. But as we shall
see in the other results of this section, this is arguably due to side effects of the
encoding, and not an inherent succinctness advantage of CRPQ= over SpLog.

More specifically, we can prove that the existence of a polynomial time
transformation from CRPQ= to SpLog implies P = NP. To show this, we shall
abuse the loop with the start marker . to encode the NP-hard non-emptiness
problem for regular expressions over unary alphabets8.

8 Finding a citation for this turned out to be surprisingly hard: It is a well-known
consequence of Stockmeyer and Meyer [43] that the intersection emptiness problem for an



A Logic for Document Spanners 63

Lemma 7.5 (Neven and Martens [35]) Given regular expressions α1, . . . αk
over the alphabet {a}, deciding whether ∅ 6=

⋂k
i=1 L(αi) is NP-hard.

Lemma 7.5 directly allows us to state the following lower bound result on
the evaluation of equality CRPQs. Note that it holds for any fixed marked
path, even the marked path Gεmp.

Lemma 7.6 Fix w ∈ Σ∗. Given ϕ ∈ CRPQ=
rx, deciding JϕK(Gwmp) 6= ∅ is

NP-hard.

Proof. We prove this via reduction from the non-emptiness problem for regular
expressions over unary alphabets, see Lemma 7.5. Given regular expressions
α1, . . . , αk over the unary terminal alphabet {.}, we define the equality CRPQ

ϕ(x) :=:

k∧
i=1

(x, πi : αi, x) ∧
k∧
j=2

(π1 = πj).

Then for every marked path Gwmp, we have JϕK(Gwmp) 6= ∅ if and only if there is

an n ≥ 0 with .n ∈
⋂k
i=1 L(αi).

As SpLog-formulas can be evaluated in polynomial time on the input ε (see
the proof of Lemma 4.8), Lemma 7.6 immediately leads us to the following.

Proposition 7.7 P = NP, if there is a polynomial time conversion from
CRPQ=

rx on marked paths to SpLog.

The proof of Lemma 7.6 shows that the encoding of words in marked paths
causes problems for the transformation, as we have to account for arbitrarily
long blocks of the marker symbols . and /.

One way of dealing with this problem is to prevent the use of equality
checks on path variables that can contain these marker symbols (which was
proposed by Fagin et al. [13]). In fact, this is the approach that we shall choose;
but before we do that in Section 7.3, we briefly discuss an alternative way of
encoding words in paths, which we call straight marked paths. Instead of using
loops on the first and last nodes (like the marked paths do), straight marked
paths and an additional initial and final node. Hence, the straight marked path
Gwsmp of a word w = a1 · · · an is this graph:

0 1 2 3 n− 1 n n+ 1 n+ 2

. a1 a2 an−1 an /

In particular, the graph Gεsmp that encodes the empty word as a straight marked
path consists of the path (0, ., 1), (1, /, 2). In contrast to marked paths, straight
marked paths do not allow queries to assign paths of arbitrary length. But as
the proof of the next result demonstrates, this encoding causes new problems.

unbounded number of DFAs is PSPACE-complete. It seems to be less well-known that as a
consequence of Galil [20], the problem is NP-complete over unary terminal alphabets (but
locating the proof in that paper without already knowing the main idea can be rather difficult).
Luckily, Lemma 27 in Neven and Martens [35] provides an explicit and accessible proof (and
although it covers only the automata case, it directly translates to regular expressions).



64 D. D. Freydenberger

Proposition 7.8 Given ϕ ∈ CRPQ=
rx, deciding if JϕK(Gεsmp) 6= ∅ is NP-hard.

Proof. We show this via a reduction from the problem one-in-three satisfiability,
which is defined as follows: Given a set M and non-empty subsets S1, . . . , Sk ⊆
M such that |Si| ≤ 3 for all i, is there a subset T ⊆M with |Si ∩ T | = 1 for
all i? As shown by Schaefer [40], this problem is NP-complete.

Assume that each Si consists of si,1 . . . , si,|Si|. The main idea is to represent
each si,j with a path variable πi,j that is mapped to the path (0, ., 1) if si,j ∈ T ,
and to an empty path on 0 or 1 otherwise. Equality tests are used to ensure
that all si,j and si′,j′ with si,j = si′,j′ have consistent assignments. Following
this intuition, we define

ϕ(x0, x1, y1, . . . , yk, z1, . . . , zk) := (x0, ., x1)

∧
k∧
i1

(
(x0, πi,j : Li,1, yi) ∧ (yi, πi,j : Li,2, zi) ∧ (zi, πi,j : Li,2, x1)

)
∧

k∧
i=1

|Si|∧
j=1

∧
si′,j′=si,j

(πi,j = πi′,j′),

where Li,j := {ε} if j > |Si|, and Li,j := {ε, .} if j ≤ |Si|. Clearly, ϕ can be
constructed in polynomial time. To see that it is correct, note that on Gεsmp,
the node variables x0 and x1 have to map to the nodes 0 and 1, respectively.
Then the conjunctions in the middle row of the definition of ϕ ensure that for
each Si, exactly one πi,j is set to the path from 0 to 1. Take particular note
that if j > |Si|, then πi,j must map to the empty path (on the node 0 or 1).

Hence, there is a one-to-one correspondence between node assignments
τ ∈ JϕK(Gεsmp), and sets T that are solutions of the one-in-three satisfiability
problem; which means that JϕK(Gεsmp) 6= ∅ if and only if such a set T exists.

Hence, Proposition 7.7 also holds for CRPQ=
rx on straight marked paths (if

we extend Definition 7.4 appropriately). The author considers this a sign that
changing the encoding of the string does not overcome the encoding issues (at
least not when using obvious encodings). Instead, the next section follows the
example of Fagin et al. [13] and restricts the queries.

7.3 Conversions Between UCRPQ= and SpLog

We saw in the previous section that the special symbols . and / can be prob-
lematic when they occur in the languages of path variables that are compared
with equalities. This was already observed by Fagin et al. [13] (although not
from a complexity point of view). To overcome technical difficulties in the
transformation of path queries to spanners, Fagin et al. proposed the notion of
Σ-restriced equality UCRPQs, which can only compare paths that do not have
the special markers as labels.
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Definition 7.9 A path variable in an equality CRPQ ϕ is Σ-restricted if
its range is a subset of Σ∗ (i. e., no word in the range contains . or /). An
equality (π = ρ) in ϕ is Σ-restricted if π and ρ are Σ-restricted. Finally, ϕ is
Σ-restricted if all of its equalities are Σ-restricted; and an equality UCRPQ is
Σ-restricted if all of its underlying equality CRPQs are Σ-restricted.

Clearly, one can check in polynomial time whether an equality UCRPQ
is Σ-restricted. Moreover, as shown in [13], every equality UCRPQ can be
converted into a Σ-restricted equality URCPQ that is equivalent on marked
paths. But we can conclude from Lemma 7.6 that this transformation is not
possible in polynomial time (under the assumption that P 6= NP).

Lemma 7.10 Assume that there is an algorithm that, given ϕ ∈ CRPQ=
rx,

computes in polynomial time a Σ-restricted ψ ∈ UCRPQ= with JψK(Gwmp) =
JϕK(Gwmp) for all w ∈ Σ∗. Then P = NP.

Proof. This follows directly from Lemma 7.6, and the fact that for Σ-restricted
ψ ∈ UCRPQ=, one can decide in polynomial time whether JψK(Gεmp) 6= ∅. The
latter holds as Gεmp contains only a single node, and no edges with labels from
Σ. Hence, path variables that occur in string equalities can only be mapped
to the empty path, which has label ε. Thus, once can consider each ψi from
ψ =

∨k
i=1 ψi by itself, and observe that JψiK(Gεmp) 6= ∅ holds if and only if for

each range Lj(πj) of ψi, the following holds:

– if πj occurs in an equality check of ψi, then ε ∈ Lj ,
– if πj does not occur in an equality check of ψi, then Lj ∩ {., /}∗ 6= ∅.

Clearly, this can be checked in polynomial time.

But even in Σ-restricted queries, the ranges for variables that do not occur
in equality checks can still contain a combination of letters from Σ and the
special marker symbols. This is technically cumbersome; and to simplify our
reasoning, we first consider queries that further restrict the use of . and /.

Definition 7.11 We say that ϕ ∈ UCRPQ= over the alphabet ∆ := Σ∪{., /}
is explicitly marked (or just explicit) if for every range Lj in ϕ, one of Lj = {.},
Lj = {/}, or Lj ⊆ Σ∗ holds.

In other word, explicit queries use the special symbols only to explicitly
designate nodes as first or last node of a marked path. In this way, they could
also be understood as queries that can use constants for the first and last
node of the marked path. Although a query that is explicit is not necessarily
Σ-restricted by definition, it is easy to see that it can be straightforwardly
made Σ-restricted (as equality checks over . and / can be replaced). Thus, we
can view explicit queries as a subclass of Σ-restricted queries.

We are now ready to observe the following connection between equality
UCRPQs and SpLog (recall that we defined PC and PCrx in Definition 5.5 back
in Section 5.2).

Theorem 7.12 There are polynomial time conversions in both directions
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1. between PC and explicit CRPQ=,
2. between PCrx and explicit CRPQ=

rx.

Proof. We prove both claims at once: The second is a special case of the first,
which we handle by avoiding the use of automata instead of regular expressions
(we mention this in the constructions when it is necessary). Although both
directions are comparatively straightforward, the transformation to CRPQ=

requires a little more technical attention. We begin with the other direction.

From CRPQ= to SpLog: Consider an explicit ϕ ∈ CRPQ=. As described in the
comment after Definition 7.11, we can also assume that ϕ is Σ-restricted. Let

ϕ( #»z f ) = ∃ #»z b :
∧

1≤i≤m

(xi, πi : Li, yi) ∧
∧

1≤j≤n

(ξLj = ξRj ),

and let X := NVars (ϕ). The main idea in the construction of the SpLog(W)-
formula ψ is that each path variable πi in ϕ is represented by a SpLog-variable
pi in ψ. In particular, this translates an RPQ (x, πi : Li, y) with Li ⊆ Σ∗ into
the quantified conjunction ∃z : (W = xpiz) ∧ (W = yz) ∧ CLi

(pi), and the
equality tests πi = πj are directly transformed into word equations pi = pj .

Following this idea, we construct an intermediate formula χ that realizes ϕ,
but is not yet a prenex conjunction. By applying a straightforward rewriting,
we shall then obtain ψ from χ. We now define

χ := ∃ #»z b, p1, . . . , pm :

m∧
i=1

χi ∧
n∧
j=1

ηj ,

where each equality check (πl = πr) in ϕ defines a word equation ηj := (pl, pr);
and for each RPQ (xi, πi : Li, yi) in ϕ, we define χi as follows:

– if Li = {.}, then χi := (xi = ε) ∧ (yi = ε) ∧ (pi = ε),
– if Li = {/}, then χi := (W = xi) ∧ (W = yi) ∧ (pi = ε),
– if Li ⊆ Σ∗, then χi := ∃z : (W = xi · pi · z) ∧ (W = yi · z) ∧ CLi

(pi).

If ϕ ∈ CRPQ=
rx, we can define the constraint CLi

with a regular expression,
which ensures that ψ ∈ SpLogrx.

Now, χ is only “almost” a prenex conjunction, as it contains some existential
quantifiers inside the conjunctions. We now obtain ψ from χ by renaming all
variables that are quantified in this way, and moving the quantifiers outside (as
in the proof of Lemma 5.6; and observe that this is compatible with Lemma 4.4).
Clearly, all this is possible in polynomial time.

From SpLog to CRPQ=: Assume we are given a SpLog(W) prenex conjunction

ϕ = ∃ #»x : (

m∧
i=1

ηi ∧
n∧
j=1

Cj).

Let X :=
(⋃

var(ηi)
)
−{W}. To simplify our definition, we assume the following:
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– All right sides of the word equations ηi are of the same length ` (this is
not essential, but streamlines the notation). More formally, we assume that
each ηi is of the form ηi = (W = ηi,1 · · · ηi,`), with ηi,j ∈ (X ∪Σ).

– For every variable x ∈ X, there is exactly one constraint Cx in ϕ.

The second assumption can be ensured by rewriting ϕ in polynomial time: If
there is an x ∈ X with no constraint, we add the constraint CΣ∗(x). If x has
multiple constraints C1, . . . , Ck with k ≥ 2, we cannot simply combine these
into a single constraint for the intersection, as we would face a blowup that
is exponential in k. Instead, we proceed as follows: First, we introduce new
existentially quantified variables x̂2, . . . , x̂k, y, z. We then add the conjunction
(W = yxz)∧

∧
2≤i≤k(W = yx̂iz), which ensures that every solution maps x and

all x̂i to the same values. Finally, in each Ci with i ≥ 2, we replace x with x̂i.
Now, let #»x f be a tuple that contains exactly the variables from {x`, xa |

x ∈ (X∩ free(ϕ))}, and let #»x b be a tuple of the variables of X that do not occur
in #»x f . We then define the explicit and Σ-restricted ψ ∈ CRPQ= as follows:

ψ( #»x f ) := ∃ #»x b, y1,0, . . . , ym,` :
∧
x∈X

(x`, πx : Σ∗, xa) ∧
∧
x∈X,
ηi,j=x

(πx = ηi,j)

∧
m∧
i=1

(
(yi,0, ., yi,0) ∧ (yi,`, /, yi,`) ∧

∧̀
j=1

(
(yi,j−1, ρi,j : Li,j , yi,j)

))
where the languages Li,j are defined as follows:

– if ηi,j ∈ Σ, then Li,j := {ηi,j},
– if ηi,j ∈ X with ηi,j = x, let Li,j be the language of the constraint Cx

(recall that we ensured above that this is uniquely defined).

In the second case, if ϕ ∈ SpLogrx, then we can also ensure that Li,j is defined
with a regular expression (if our goal is a SpLogrx-formula).

In order to understand this construction, first note that for each x ∈ X,
the RPQ (x`, πx : Σ∗, xa) defines a path πx from x` to xa. This models all
possible substitutions for x in the input word of ϕ.

The second part of ψ, in the lower row, expresses each word equation ηi as a
path from yi,0 to yi,l, using the markers . and . to ensure that the whole word
is matched. Each position ηi,j of ηi is represented by a path variable ρi,j , and
the choice of the range ensures that the constraints are respected. Furthermore,
the equalities πx = ηi,j guarantee that all occurrences of a variable x are
replaced in the same way. Like for the other direction, it is clear that the
transformation is possible in polynomial time.

As UCRPQs are disjunctions of CRPQs, and as DPC consists of disjunctions
of PC-formulas (again, recall Definition 5.5), we can directly conclude the
following.

Corollary 7.13 There are polynomial time conversions in both directions

1. between DPC and explicit UCRPQ=,
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2. between DPCrx and explicit UCRPQ=
rx .

We discuss a significant consequence of Theorem 7.12 in Section 7.4. Before
that, we consider the transformation of queries that are not explicitly marked.

Theorem 7.14 There are polynomial time conversions

1. from Σ-restricted UCRPQ= to SpLog,
2. from Σ-restricted UCRPQ=

rx to SpLogrx.

Proof. Following the same reasoning as for Corollary 7.13, it suffices to give a
construction for conjunctive queries. As in the proof of Theorem 7.12, we treat
CRPQ=

rx as a special case that is mentioned only when necessary.
The main idea of this construction is that we rewrite those underlying

RPQs where the range contains words with . or /. For each of these queries, we
distinguish whether the special symbol is actually used or not. To simplify our
construction, we abuse the notation, and allow alternations between conjunc-
tions and disjunctions inside the rewritten queries. This is not a problem, as we
can extend the proof of Theorem 7.12 to directly translate these disjunctions
into SpLog-disjunctions. In order to define the rewriting, we use the following
operations on languages L ⊆ ∆∗ with a ∈ {., /}:

– the a-elimination, elima(L) := L ∩ (∆− {a})∗,
– the left quotient by a+, lqa+(L) := {v | uv ∈ L for some u ∈ {a}+},
– the right quotient by a+, rqa+(L) := {u | uv ∈ L for some v ∈ {a}+}

We shall discuss further down how these operations can be implemented effi-
ciently on NFAs and regular expressions. Before that, we discuss the rewriting.

Consider any RPQ (x, π : L, y) that is part of the input Σ-restricted equality
CRPQ. Assume that L contains a word in which . occurs. We now rewrite this
RPQ into the following disjunction of equality CRPQs:

(x, π : elim.(L), y) ∨
(
(x, ., x) ∧ (x, π : elim.(lq.+(L)), y)

)
In the left part of the disjunction, we handle the case that . is not used. The
resulting language might be empty, but this is not a problem. In the right part,
we first express that . is read at least once. This is done by using (x, ., x), and
allows us to restrict the path π to lq.+(L). But as we can consume arbitrarily
many . this way, we can also restrict π to use only letters from ∆− {.}. As
our input query is Σ-restricted, we know that π does not occur in equality
checks. Hence, this rewriting does not change the behaviour on marked paths.

After this rewriting, we can assume that all ranges consist of subsets of
(Σ ∪{/})∗. We now consider all underlying RPQs (x, π : L, y) where L contains
words with /. These are rewritten into

(x, π : elim/(L), y) ∧
(
(y, /, y) ∧ (x, π : elim/(rq/+(L)), y)

)
The reasoning is exactly the same as in the case for .. These rewriting steps
results in ranges that are {.}, {/}, or a subset of Σ∗. Hence, if we “multiplied
out” the constructed query, we would obtain an explicit Σ-restricted equality
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UCRPQ that, on marked paths, is equivalent to the input query. Obviously,
this might result in a query of exponential size. But if we instead allow the
transformation from the proof of Theorem 7.12 to convert the path query
disjunctions directly into SpLog-disjunctions, we obtain a polynomial time
transformation to SpLog, assuming that we can guarantee (as promised above)
that the language operations can be computed in polynomial time.

If a range is defined using an NFA A, this can be shown by combining some
standard constructions (which can be found in e. g. Hoproft and Ullman [27]):
For a-eliminiation, we construct an NFA for elima(L(A)) by removing all
transitions with the label a from the NFA A. This is clearly possible in
polynomial time. For left quotient by a+, we first convert A into an NFA with
multiple initial states A′, where the initial states of A′ are those states of A
that can be reached by using only transitions with label a. We then convert A′

into an equivalent NFA. Again, each of these steps is possible in polynomial
time. Finally, we observe that the right quotient by a+ can be computed in
polynomial time by using the left quotient by a+ and the reversal operation.

If the range is defined with a regular expression α, we first observe that
a regular expression for the a-elimination can be computed by replacing all
occurrences of a in α with ∅. The only complicated case is the left quotient by
a+. Luckily, the main result of Gruber and Holzer [25] states that there exists
a regular expression α′ for this language, and that α′ is of polynomial size.
Moreover, the proof in [25] also implies that α′ can be computed in polynomial
time. Finally, the reversal of a regular expression can be computed by reversing
the expression, which allows us to reduce the right quotient by a+ to the left
quotient, as we did in the automata case.

The author considers it unlikely that the other conversion direction is
possible in polynomial time: The SpLog-formulas that are derived from the
construction in the proof of Theorem 7.14 use disjunctions in a very restricted
way (as both parts of the disjunction look “rather similar”), and alternate a
bounded number of times between disjunctions and conjunctions. A polynomial
time transformation in the opposite direction would need to handle disjunctions
of arbitrary formulas, and arbitrary numbers of alternations.

7.4 Adapting Undecidability Results for ECPRQs to Spanners

We conclude our comparison of equality UCRPQs and SpLog with a brief discus-
sion on how Theorem 7.12 can be used to refine some results of Freydenberger
and Holldack [16]. As shown in Theorem 4.6 of [16], it is undecidable whether a
core spanner representation defines a regular spanner (in other words, whether
string equality selections ζ= are necessary to define the spanner). This holds

even for spanners from the fragment RGX{π,ζ
=,∪} (i. e., RGXcore without ./).

More importantly, this also affects the relative succinctness of core and
regular spanner representations, and the complementation of core spanners:
In both cases, the transformation can lead to blowups that are not bounded
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by any recursive function (see Theorems 4.9 to 4.11 of [16]). By Theorem 4.9,
these results also apply to SpLog-formulas. In particular, the trade-off from
SpLog to regular languages (regardless of whether they are defined by regular
expressions or by NFAs) is not bounded by any recursive function.

Similar results were obtained for ECRPQs by Freydenberger and Schweikardt
in [19] (see in particular Theorem 4.6 in that paper). Notably, the proofs of
most results in [19] do not require the full power of ECRPQs, but use equality
CRPQs instead. Moreover, most of the proofs are restricted to arguing on
graphs that are paths, and can directly be used for CRPQ= on marked paths
(see in particular the definition of FL in Section 4 of [19]). The proof of Theo-
rem 4.6 in [19] fits the second of these criteria, and we can directly transform
its query into an explicit Σ-restricted query; the only (minor) problem is
that it also uses not just string equalities, but also the special k-ary relation
Rxor := {(w1, . . . , wk) | there is exactly one i with wi 6= ε}.

Luckily, the constructed query applies Rxor only to variables cF1,1, . . . , c
F
k,1,

each having the range {ε,F}. Thus, we can express this specific use of Rxor as

(W = x · cF1,1 · · · c
F
k,1 · y) ∧ (W = x ·F · y) ∧

k∧
i=1

C(ε∨F)(c
F
i,1),

or, alternatively, its CRPQ=-equivalent. Hence, we can combine these obser-
vations, the proof of Theorem 4.6 in [19], and our Theorem 7.12 to conclude
that the aforementioned undecidabilities and non-recursive blowups still hold
if we do not consider all of SpLog, but only prenex conjunctions. Finally, note
that the transformation of SpLog to spanner representations from the proof of
Theorem 4.9 (see Section 4.2.1) transforms PCrx to core spanner representations

from the fragment RGX{π,ζ
=,×}; and the analogous result holds for PC and

VA{π,ζ
=,×}. Thus, while [16] showed that these results hold for core spanners

without join, we can also conclude that they hold for core spanners that do
not use union, and only use join as cross product.

8 Negation for SpLog and Difference for Spanners

Fagin et al. [13] also examined core spanners that are extended with a dif-
ference operator. Let P1 and P2 be spanners with SVars (P1) = SVars (P2).
Then their difference P1 − P2 is defined by SVars (P1 − P2) := SVars (P1)
and (P1 − P2)(w) = P1(w) − P2(w) for all w ∈ Σ∗. As shown in [13],

JRGXcore∪{−}K ⊃ JRGXcoreK. In other words, allowing the difference operator
increases the expressive power of core spanners.

As one of the reviewers pointed out, this raises the question whether the
strong connection between SpLog and core spanners also exists between SpLog
with negation and core spanners with a difference operator. First, note that
Quine [38] observed already as far back as 1942 that extending EC with negation
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results in an undecidable theory9. More specifically, satisfiability and evaluation
both become undecidable. In order to define negation for SpLog, we basically
have two choices: One is starting with a definition of ECreg that is extended
with negation, and then restricting the syntax to SpLog with negation. The
other is directly defining syntax and semantics of SpLog that is extended with
negation (while ignoring negation for ECreg). In order to keep the formulas
cleaner, we shall choose the second approach; but this does not affect the
results that we obtain.

We now define SpLog with negation, or SpLog¬ for short.

Definition 8.1 Let W ∈ Ξ. Then SpLog¬(W), the set of all SpLog¬-formulas
with main variable W, is defined by extending the recursive definition of SpLog
from Definition 4.2 with the additional rule that if ϕ ∈ SpLog¬(W), then
(¬ϕ) ∈ SpLog¬(W), with free(¬ϕ) = free(ϕ). We define SpLog¬rx analogously to
SpLogrx.

The semantics of SpLog¬ extend the semantics of SpLog by defining that
σ |= ¬ϕ if we have

1. σ(x) v σ(W) for all x ∈ free(ϕ), and
2. σ |= ϕ does not hold.

We apply all notational conventions for ECreg and SpLog to SpLog¬ as
well. Regarding the definition of the semantics of negation, note that the first
condition (“all free variables need to map to subwords of the main variable”) is
used to ensure that SpLog¬ behaves like SpLog in the sense that it guarantees
that all variables are safe. We could achieve the same behavior syntactically if
we dropped that condition in the semantics, and required that negation is only
used in formulas that are guarded, in a manner like ¬ϕ∧

∧
x∈free(ϕ)−{W} x v W.

This would shift the effort of ensuring safety from the semantics to the syntax,
and result in less readable formulas. As stated above, this would not affect the
results in this section.

The notions of formulas that realize spanners, and vice versa, that are
given in Definition 4.6 and Definition 4.7 (respectively) directly generalize from
SpLog to SpLog¬. Building on these, we observe the following.

Lemma 8.2 Let ϕ1, ϕ2 ∈ SpLog¬(W) be formulas that realizes spanners P1

and P2, respectively. Then ϕ1 ∧ ¬ϕ2 realizes P1 − P2.

Proof. This follows directly from Definition 4.6, extended to SpLog¬.

The other direction requires more technical effort. This is due to a peculiar
aspect of Definition 4.7 (also recall the discussion after it), which is explained
in more detail in the proof of the following rather technical result.

9 This description of Quine [38] is based on the notations that are used in the current
paper. The actual order of events was that first Quine examined the theory of concatenation;
and EC was later introduced as its existential positive fragment.
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Lemma 8.3 Let ϕ ∈ SpLog¬(W), and let P be a spanner that realizes ϕ. Let
X := SVars (P ) and define ΥX :=1x∈X JΣ∗x{Σ∗}Σ∗K. We use P̂ to denote
the spanner that is obtained from P by renaming each variable x ∈ X into a
new variable x̂, and define P¬ := ΥX − πXS

(
ΥX × P̂

)
, where S is a sequence

of string equality selections that contains exactly the selections ζ=x,x̂ with x ∈ X.
Then P¬ realizes ¬ϕ.

Proof. First, note that ΥX is the universal spanner for X. See [13] for details;
for our purposes, it suffices to know that for all w ∈ Σ∗, we have that ΥX(w)
contains all possible (X,w)-tuples.

Next, recall that according to Definition 4.7 we have σ ∈ JϕK(w) if and only
if there exists some µ ∈ P (w) with wµ(x) = σ(x) for all x ∈ SVars (P ). But this
is not enough implement negation through the difference operator. For this,
we need to describe all such (X,w)-tuples. This issue was already mentioned
in the discussion after Definition 4.7, and P ′ := πXS

(
ΥX ./ P̂

)
is the result

of the construction that is described there. By definition, µ ∈ P ′(w) holds if
and only if there is some µ̂ ∈ P̂ (w) with wµ(x) = wµ̂(x̂) for all x ∈ X. As P̂ is
just a renamed version of P , and as P realizes ϕ, we conclude µ ∈ P ′(w) if
and only if σµ |= ϕ, where the substitution σµ is defined by σµ(W) := w and
σµ(x) := wµ(x) for all x ∈ X.

Finally, observe that for every w ∈ Σ∗, we have µ ∈ P¬(w) if and only if µ
is an (X,w)-tuple and µ /∈ P ′(w), which (according to the previous paragraph)
holds if and only if µ is an (X,w)-tuple but we do not have σµ |= ϕ. In other
words, P¬ realizes ¬ϕ.

By adding Lemma 8.2 and Lemma 8.3 to the proof of Theorem 4.9, we can
directly extend the latter to cover SpLog¬. The same applies to Corollary 4.10.
We summarize this as follows.

Theorem 8.4 There are polynomial time conversions

1. from RGXcore∪{−} to SpLog¬rx, and from SpLog¬rx to RGXcore∪{−},

2. from SpLog¬ to VA
core∪{−}
set and to VA

core∪{−}
stk ,

3. modulo ε from VAcore∪{−} to SpLog¬.

There are polynomial size conversions from VAcore∪{−} to SpLog¬. These con-
versions run in polynomial time if all v-automata in the spanner representation
are functional.

In other words, the relation between SpLog and core spanners is the same
as the one between SpLog¬ and core spanners with difference. Likewise, SpLog¬

can be used to define relations for core spanners with difference. Hence, SpLog¬

and core spanners with difference can be used as interchangeably as SpLog and
core spanners. A thorough study of the the properties of SpLog¬ (and, thereby,
core spanners with difference) is outside the scope of the current paper, and
left to future publication.

We only note that some properties of SpLog¬ follow immediately from
previously known properties of core spanners or the theory of concatenation.
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For example, we can directly conclude from the undecidability of core spanner
universality (see [16]) that satisfiability is undecidable for SpLog¬ (this also
follows, although with a little more effort, from the fact that the theory of
concatenation is undecidable, see [38]). Another direct consequence of [16] is
that the blowup from SpLog¬ to SpLog is not bounded by any recursive function.
Of course, like one of the reviewers pointed out, the restriction that each variable
is mapped to a subword of the main variable ensures that evaluation of SpLog¬

is satisfiable; and it is easily seen that for inputs ϕ ∈ SpLog¬ and σ, one can
decide in PSPACE whether σ |= ϕ, by reasoning analogously to the NP upper
bound in Corollary 4.12.

In contrast to these easy pickings, there is no general inexpressibility result
for SpLog¬ (like Theorem 6.5 for SpLog). The author is not aware of a result
for EC with negation that corresponds to Theorem 6.4. While some pumping
result for SpLog¬ (and, hence, core spanners with difference) would be very
interesting, it seems safe to assume that finding such a result is even more
challenging than finding new inexpressibility results for SpLog. But at the
very least, SpLog¬ provides us with an alternative approach to examining the
expressive power of core spanners with difference.

9 Conclusions and Further Directions

As we have seen, SpLog has the same expressive power as the three classes
of representations for core spanners that were introduced by Fagin et al. [13],
and it is possible to convert between these models in polynomial time (and
the analogous result holds for SpLog¬ and core spanners with difference). As
a result of this, core spanner representations can be converted to SpLog to
decide satisfiability and hierarchicality, and SpLog provides a convenient way
of defining core spanners, and in particular relations that are selectable by core
spanners (see e. g. the formula ϕ 6= in Example 5.3). Of course, whether one
considers SpLog or one of the spanner representations more convenient depends
on personal preferences and the task at hand. Independent of one’s opinion
regarding the practical applications of SpLog, it can be used as a versatile tool
for examining core spanners: For example, we used SpLog as intermediary to
obtain polynomial time conversions between various subclasses of VAcore.

In addition to this, we defined a pumping lemma for core spanners by
connecting SpLog to EC. A promising next step could be extending this to more
general inexpressibility techniques that go beyond bounded SpLog-languages.
While the connection to word equations suggests that this line of research is
difficult, one might also expect that at least some of the existing techniques
for word equations can be used or extended in a suitable way.

Another set of question where the comparatively simple syntax and seman-
tics of SpLog might prove useful is the relative succinctness of various models.
For example, in order to examine the blowup from VAcore to RGXcore, it suffices
to examine the blowup from NFAs to SpLogrx. The author conjectures that
this blowup is exponential.
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As another topic, note that the conversion of SpLog-formulas to spanner
representations preserves many structural properties. Hence, when looking
for subclasses of spanners that have certain properties (e. g., more efficient
combined complexity of evaluation), the search can start with examining certain
fragments of SpLog that correspond to interesting classes of spanners. One
direction that seems to be promising as well as challenging is developing a
notion of acyclic core spanners, which would need to account for the interplay of
join and string equality (as seen in Corollary 4.11, every spanner representation
can be rewritten into a representation that simulates ./ with × and ζ=). This
direction might be helped by first defining acyclicity for SpLog-formulas, which
in turn could be inspired by the restrictions that are discussed in Reidenbach
and Schmid [39].

A more fundamental question is whether JECregK = JSpLogK. In addition
to our discussion in Section 5.2, a potential approach to this is examining
whether every bounded ECreg-language is an EC-language (as the reasoning from
Theorem 6.2 does not carry over from SpLog to ECreg). As a related question,
the expressive power of SpLog¬ remains open (aside of JSpLogK ⊂ JSpLog¬K,
which follows from [13]).

Another aspect of SpLog that makes it interesting beyond its connection to
core spanners is that it can be understood as the fragment of ECreg describes
properties of words without using any additional space, as every variable and
equation has to be a subword of the main variable (hence, the name “SpLog”
can also be interpreted as “subword property logic”). One effect of this is that
evaluation of SpLog has a friendlier upper bound than evaluation of ECreg

(NP and PSPACE, respectively). While we have only defined SpLog with a
single main variable, a natural generalization would be allowing multiple main
variables (the definition generalizes naturally to “every variable is a subword
of one of the main variables”, and the upper bound for evaluation remains).
A potential application of SpLog with two multiple variables is describing
relations for path labels in graph databases.
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